We introduce a new set of models and adaptive psychometric testing methods for multidimensional psychophysics. In contrast to traditional adaptive staircase methods like PEST and QUEST, the method is multi-dimensional and does not require a grid over contextual dimensions, retaining sub-exponential scaling in the number of stimulus dimensions. In contrast to more recent multi-dimensional adaptive methods, our underlying model does not require a parametric assumption about the interaction between intensity and the additional dimensions. In addition, we introduce a new active sampling policy that explicitly targets psychometric detection threshold estimation and does so substantially faster than policies that attempt to estimate the full psychometric function (though it still provides estimates of the function, albeit with lower accuracy). Finally, we introduce AEPsych, a user-friendly open-source package for nonparametric psychophysics that makes these technically-challenging methods accessible to the broader community.
翻译:我们为多维心理物理学引入了一套新的模型和适应性心理测试方法。与PEST和QUEST等传统的适应性楼梯方法不同,该方法是多维的,不要求在环境维度上形成一个网格,保留刺激维度数量的亚特量缩放。与较近的多维适应方法不同,我们的基本模型并不要求对强度和额外维度之间的相互作用进行参数假设。此外,我们引入了一种新的积极抽样政策,明确针对心理测深阈值估计,其速度远远快于试图估算全面心理测算功能的政策(尽管该方法仍然提供功能的估计数,尽管其精确度较低 ) 。 最后,我们引入了AEPSych,这是一个方便用户的开放源包,用于非参数性心理物理学,使广大社区能够使用这些技术上困难的方法。