For the class of Gauss-Markov processes we study the problem of asymptotic equivalence of the nonparametric regression model with errors given by the increments of the process and the continuous time model, where a whole path of a sum of a deterministic signal and the Gauss-Markov process can be observed. In particular we provide sufficient conditions such that asymptotic equivalence of the two models holds for functions from a given class, and we verify these for the special cases of Sobolev ellipsoids and H\"older classes with smoothness index $> 1/2$ under mild assumptions on the Gauss-Markov process at hand. To derive these results, we develop an explicit characterization of the reproducing kernel Hilbert space associated with the Gauss-Markov process, that hinges on a characterization of such processes by a property of the corresponding covariance kernel introduced by Doob. In order to demonstrate that the given assumptions on the Gauss-Markov process are in some sense sharp we also show that asymptotic equivalence fails to hold for the special case of Brownian bridge. Our results demonstrate that the well-known asymptotic equivalence of the Gaussian white noise model and the nonparametric regression model with independent standard normal distributed errors can be extended to a broad class of models with dependent data.
翻译:对于高斯-马尔科夫进程,我们研究非参数回归模型的非参数等同性问题,其错误来自该进程的递增和连续时间模型,在这个模型中可以观察到确定信号和高斯-马尔科夫进程的总和的整个路径。特别是,我们提供了充分的条件,例如,两种模型的等同性对于某一类的功能具有同等的特征,我们核实了这两个模型对于Sobolev ellopisids和H\'older 类的特殊案例的等同性,在高斯-马尔科夫进程的轻度假设下,平滑指数为1/2美元。为了得出这些结果,我们对与高斯-马尔科夫进程相关的再生产核心内尔·希尔伯特空间作了明确的描述,这取决于由Doob引入的对应的变量内涵对此类进程的定性。为了证明高斯-马尔科夫进程的假设在某种意义上是清晰的,我们还表明,在高斯-马尔科夫进程上给出的假设在轻度假设中无法维持与高斯-马尔科夫进程的常规标准的常态、高斯-标准的回归性标准,我们还表明,标准的典型模型与高斯-高斯-古尔夫的典型的典型的模型与亚的典型的典型的典型的典型之间的结果是不甚高斯-古尔基的。