We consider linear parameter-dependent systems $A(\mu) x(\mu) = b$ for many different $\mu$, where $A$ is large and sparse, and depends nonlinearly on $\mu$. Solving such systems individually for each $\mu$ would require great computational effort. In this work we propose to compute a partial parameterization $\tilde{x} \approx x(\mu)$ where $\tilde{x}(\mu)$ is cheap to compute for many different $\mu$. Our methods are based on the observation that a companion linearization can be formed where the dependence on $\mu$ is only linear. In particular, we develop methods which combine the well-established Krylov subspace method for linear systems, GMRES, with algorithms for nonlinear eigenvalue problems (NEPs) to generate a basis for the Krylov subspace. Within this new approach, the basis matrix is constructed in three different ways, using a tensor structure and exploiting that certain problems have low-rank properties. We show convergence factor bounds obtained similarly to those for the method GMRES for linear systems. More specifically, a bound is obtained based on the magnitude of the parameter $\mu$ and the spectrum of the linear companion matrix, which corresponds to the reciprocal solutions to the corresponding NEP. Numerical experiments illustrate the competitiveness of our methods for large-scale problems. The simulations are reproducible and publicly available online.


翻译:我们考虑的是线性依赖参数系统$A(\ mu) x(\ mu) = b$(b) 美元,许多不同的美元 美元,美元是大而少的,不线性地依赖$ mu$。 单独解决每个美元 mu$的这种系统需要巨大的计算努力。 在这项工作中,我们建议计算部分参数化$(\ tilde){x}\ approx x(\ mu)$, 美元可以廉价地计算许多不同的美元。 我们的方法基于这样的观察,即如果对美元的依赖只是线性,就可以形成一个伴生线性线性线性线性线性。 特别是,我们开发了将成熟的 Krylov 亚空间方法( GMRES) 与非线性电子值问题的算法( NEPs) 结合起来的方法。 在这个新方法中,基础矩阵以三种不同的方式构建, 使用高压结构, 并利用某些问题具有低级的线性特性。 我们用最接近的基数的基质的基质的基质的基数, 我们用最接近的基调的基调的基调的基调的基调的基调的基调的基调的基调的基调的基调的基调的基调。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Linear Classifiers Under Infinite Imbalance
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月5日
VIP会员
相关资讯
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员