We consider linear parameter-dependent systems $A(\mu) x(\mu) = b$ for many different $\mu$, where $A$ is large and sparse, and depends nonlinearly on $\mu$. Solving such systems individually for each $\mu$ would require great computational effort. In this work we propose to compute a partial parameterization $\tilde{x} \approx x(\mu)$ where $\tilde{x}(\mu)$ is cheap to compute for many different $\mu$. Our methods are based on the observation that a companion linearization can be formed where the dependence on $\mu$ is only linear. In particular, we develop methods which combine the well-established Krylov subspace method for linear systems, GMRES, with algorithms for nonlinear eigenvalue problems (NEPs) to generate a basis for the Krylov subspace. Within this new approach, the basis matrix is constructed in three different ways, using a tensor structure and exploiting that certain problems have low-rank properties. We show convergence factor bounds obtained similarly to those for the method GMRES for linear systems. More specifically, a bound is obtained based on the magnitude of the parameter $\mu$ and the spectrum of the linear companion matrix, which corresponds to the reciprocal solutions to the corresponding NEP. Numerical experiments illustrate the competitiveness of our methods for large-scale problems. The simulations are reproducible and publicly available online.
翻译:我们考虑的是线性依赖参数系统$A(\ mu) x(\ mu) = b$(b) 美元,许多不同的美元 美元,美元是大而少的,不线性地依赖$ mu$。 单独解决每个美元 mu$的这种系统需要巨大的计算努力。 在这项工作中,我们建议计算部分参数化$(\ tilde){x}\ approx x(\ mu)$, 美元可以廉价地计算许多不同的美元。 我们的方法基于这样的观察,即如果对美元的依赖只是线性,就可以形成一个伴生线性线性线性线性线性。 特别是,我们开发了将成熟的 Krylov 亚空间方法( GMRES) 与非线性电子值问题的算法( NEPs) 结合起来的方法。 在这个新方法中,基础矩阵以三种不同的方式构建, 使用高压结构, 并利用某些问题具有低级的线性特性。 我们用最接近的基数的基质的基质的基质的基数, 我们用最接近的基调的基调的基调的基调的基调的基调的基调的基调的基调的基调的基调的基调的基调。