Cell-free massive MIMO (CF-mMIMO) systems represent a promising approach to increase the spectral efficiency of wireless communication systems. However, near-optimal solutions require a large amount of signaling exchange between access points (APs) and the network controller (NC). In addition, the use of hybrid beamforming in each AP reduces the number of power hungry RF chains, but imposes a large computational complexity to find near-optimal precoders. In this letter, we propose two unsupervised deep neural networks (DNN) architectures, fully and partially distributed, that can perform coordinated hybrid beamforming with zero or limited communication overhead between APs and NC, while achieving near-optimal sum-rate with a reduced computational complexity compared to conventional near-optimal solutions.
翻译:大型无细胞大型MIMO(CF-MMIMO)系统是提高无线通信系统光谱效率的一个很有希望的方法,然而,近乎最佳的解决办法需要接入点和网络控制器之间大量信号交换。 此外,在每个AP中使用混合波束减少了饥饿的RF链的电力数量,但为寻找接近最佳的预相器而带来了巨大的计算复杂性。在本信里,我们提议了两个完全和部分分布的未经监督的深层神经网络(DNN)结构,这些结构可以以零或有限的APs和NC之间的通信间接费用进行协调一致的混合组合,同时实现接近最佳的总和率,与传统的接近最佳的解决办法相比,计算复杂性降低。