We study the well-posedness and numerical approximation of multidimensional stochastic differential equations (SDEs) with distributional drift, driven by a fractional Brownian motion. First, we prove weak existence for such SDEs. This holds under a condition that relates the Hurst parameter $H$ of the noise to the Besov regularity of the drift. Then under a stronger condition, we study the error between a solution $X$ of the SDE with drift $b$ and its tamed Euler scheme with mollified drift $b^n$. We obtain a rate of convergence in $L^m(\Omega)$ for this error, which depends on the Besov regularity of the drift. This result covers the critical case of the regime of strong existence and pathwise uniqueness. When the Besov regularity increases and the drift becomes a bounded measurable function, we recover the (almost) optimal rate of convergence $1/2-\varepsilon$. As a byproduct of this convergence, we deduce that pathwise uniqueness holds in a class of H\"older continuous solutions and that any such solution is strong. The proofs rely on stochastic sewing techniques, especially to deduce new regularising properties of the discrete-time fractional Brownian motion. We also present several examples and numerical simulations that illustrate our results.


翻译:我们研究的是分布式流动的多维随机差异方程式(SDEs)的准确性和数字近似性。 首先,我们证明这种SDEs存在薄弱。 这符合一个条件, 该条件与漂移的贝索夫常规性有关, 其噪音的赫斯特参数$H$与贝索夫正常性有关。 然后, 在一个更强大的条件下, 我们研究SDE以漂移美元为单位的溶液( X$ ) 与其以平滑的漂移美元为单位的软化尤尔格方案之间的误差。 作为这一汇合的副产品, 我们推断出, 以美元(\ 奥梅加) $($) 来计算这一错误的趋同率, 这取决于漂移的贝索夫常规性。 这个结果涵盖了强势存在和路径独特性制度的关键案例。 当Besov的周期性上升和漂移成为一种受约束的可测量功能时, 我们恢复了(最接近的) 最佳趋同率1/2\ varepslonalonal$。 作为这一趋同的副产品, 我们推断出路径的独特性的独特性在一种H\\\\\\\\\\caldeal rodeal rodeal rodeal rodeal rodeal extime extime extical extime exildal ex ex extime ex

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年5月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员