Federated Learning is a popular distributed learning paradigm in machine learning. Meanwhile, composition optimization is an effective hierarchical learning model, which appears in many machine learning applications such as meta learning and robust learning. More recently, although a few federated composition optimization algorithms have been proposed, they still suffer from high sample and communication complexities. In the paper, thus, we propose a class of faster federated compositional optimization algorithms (i.e., MFCGD and AdaMFCGD) to solve the nonconvex distributed composition problems, which builds on the momentum-based variance reduced and local-SGD techniques. In particular, our adaptive algorithm (i.e., AdaMFCGD) uses a unified adaptive matrix to flexibly incorporate various adaptive learning rates. Moreover, we provide a solid theoretical analysis for our algorithms under non-i.i.d. setting, and prove our algorithms obtain a lower sample and communication complexities simultaneously than the existing federated compositional algorithms. Specifically, our algorithms obtain lower sample complexity of $\tilde{O}(\epsilon^{-3})$ with lower communication complexity of $\tilde{O}(\epsilon^{-2})$ in finding an $\epsilon$-stationary solution. We conduct the numerical experiments on robust federated learning and distributed meta learning tasks to demonstrate the efficiency of our algorithms.


翻译:联邦学习是机器学习中流行的分布式学习范例。 同时,组合优化是一种有效的分层学习模型,出现在许多机器学习应用中,例如元学习和鲁棒学习。 最近,尽管已经提出了一些联邦组合优化算法,但它们仍然受到高样本和通信复杂性的困扰。 因此,在本文中,我们提出了一类更快的联邦组合优化算法(即MFCGD和AdaMFCGD),以解决非凸分布式组合问题,该算法建立在基于动量的方差减少和本地-SGD技术之上。 特别地,我们的自适应算法(即AdaMFCGD)使用统一的自适应矩阵,以灵活地结合各种自适应学习率。此外,我们为我们的算法提供了在非独立同分布设置下的坚实理论分析,并证明了我们的算法同时获得了较低的样本和通信复杂度,比现有的联邦组合算法更低。 具体而言,在找到$\epsilon$- 稳定解的情况下,我们的算法同时获得了低样本复杂度$\tilde{O}(\epsilon^{-3})$和低通信复杂度 $\tilde{O}(\epsilon^{-2})$。我们在鲁棒联邦学习和分布式元学习任务上进行数值实验,以证明我们算法的效率。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
元学习(Meta-Learning) 综述及五篇顶会论文推荐
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
元学习(Meta-Learning) 综述及五篇顶会论文推荐
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员