元学习(Meta-Learning) 综述及五篇顶会论文推荐

2019 年 4 月 14 日 专知
元学习(Meta-Learning) 综述及五篇顶会论文推荐

【导读】Meta Learning 元学习或者叫做 Learning to Learn 学会学习是当下研究热点。专知整理了近期关于元学习的综述及2019年五篇顶会论文, 欢迎查看!


【元学习综述及推送论文便捷下载】

请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“元学习”就可以获取《元学习(Meta-Learning) 综述及五篇顶会论文推荐》的论文下载链接~



元学习综述

元学习,或学习学习,是一门系统地观察不同机器学习方法如何在广泛的学习任务中执行的科学,然后从这种经验或元数据中学习,以比其他方法更快的速度学习新任务。这不仅极大地加快和改进了机器学习管道或神经体系结构的设计,还允许我们用以数据驱动方式学习的新方法取代手工设计的算法。在本文中,我们将概述这一迷人且不断发展的领域的最新进展。


  • Meta-Learning: A Survey.  Joaquin Vanschoren.

  • Chapter 2: Meta Learning [bibtex]. By Joaquin Vanschoren

论文地址:

http://www.zhuanzhi.ai/paper/dd60eaffea966331e199fa531bae7044


元学习究竟是什么?这《基于梯度的元学习》199页伯克利博士论文带你回顾元学习最新发展脉络







五篇元学习论文推荐



  1. 微分凸优化元学习 ,CVPR 2019 Oral



许多元学习方法对于小样本学习依赖于简单基础学习器,如最近邻分类器。然而,即使在小样本的情况下,经过判别式训练的线性预测器也能提供更好的泛化效果。我们建议使用这些预测器作为基础学习器来学习用于小样本学习的表示,并表明它们在一系列小样本识别基准测试中提供了更好的特征大小和性能之间的权衡。我们的目标是学习新的类别在线性分类规则下很好概括的特征嵌入。为了有效地解决这一问题,我们利用线性分类器的两个性质:凸问题最优性条件的隐微分和优化问题的对偶公式。这使我们能够使用高维嵌入,并在适当增加计算开销的情况下改进泛化。我们的方法名为MetaOptNet,在miniImageNet、tieredImageNet、CIFAR-FS和FC100小样本学习基准数据集上取得了最先进的性能


2. 无监督元学习,ICLR 2019

无监督学习的一个核心目标是从无标记数据或经验中获取表示,这些数据或经验可用于从少量标记数据中更有效地学习下游任务。以前的许多无监督学习工作都是通过开发基于重构、解缠、预测和其他度量的代理目标来实现的。相反,我们开发了一种无监督元学习方法,它显式地优化了从少量数据学习各种任务的能力。为此,我们以自动的方式从未标记的数据构造任务,并在构造的任务上运行元学习。令人惊讶的是,我们发现,当与元学习集成时,相对简单的任务构建机制,例如集群嵌入,可以在各种下游的、由人类指定的任务上获得良好的性能。我们对四个图像数据集的实验表明,我们的无监督元学习方法获得了一种没有任何标记数据的学习算法,适用于广泛的下游分类任务,改进了之前四种无监督学习方法学习的嵌入。



3. 在线元学习

智能系统的一个核心能力是能够不断地建立在以前的经验之上,以加快和加强对新任务的学习。两种不同的研究范式研究了这个问题。元学习将此问题视为在模型参数之上学习优先级,模型参数能够快速适应新任务,但通常假设一组任务作为批处理一起可用。相比之下,在线学习考虑的是一个连续的环境,在这个环境中,问题一个接一个地暴露出来,但传统上只训练一个模型,没有任何特定于任务的适应性。这项工作引入了一个在线元学习设置,它融合了上述两种范式的思想,以更好地捕捉持续终生学习的精神和实践。我们提出了遵循元领导算法,将MAML算法扩展到该设置。理论上,这项工作提供了一个O(logT)遗憾保证,与标准的在线设置相比,只有一个额外的高阶平滑度假设。我们对三种不同大规模任务的实验评估表明,该算法的性能显著优于传统在线学习方法。



4. 多城市学习:时空预测的元学习方法,WWW2019




时空预测是构建智能城市的基础问题,对于交通控制、出租车调度、环境政策制定等任务具有重要意义。由于数据采集机制的原因,经常会出现空间分布不平衡的数据采集例如,一些城市可能会发布多年的出租车数据,而另一些城市只发布几天的数据;有些区域可能有由传感器监测的恒定水质数据,而有些区域只有少量的水样。在本文中,我们解决了数据采集周期较短的城市时空预测问题。我们的目标是通过迁移学习利用其他城市的长期数据不同于以往将知识从单一来源城市转移到目标城市的研究,我们是第一个利用多个城市的信息来增加转移的稳定性。具体地说,我们提出的模型被设计成一个具有元学习范式的时空网络元学习范式学习时空网络的广义初始化,能够有效地适应目标城市。此外,还设计了一种基于模式的时空记忆,用于提取长期的时间信息。,周期性)。我们对两项任务进行了广泛的实验:交通(出租车和自行车)预测和水质预测。实验结果表明,该模型在多个竞争基准模型上的有效性。


5. 通过元学习进行图神经网络对抗攻击,ICLR 2019

图深度学习模型已经在许多任务上提高了性能。尽管它们最近取得了成功,但人们对它们的健壮性知之甚少。我们研究了基于图神经网络的节点分类训练时间攻击对离散图结构的影响。我们的核心原则是使用元梯度来解决底层训练时间攻击的二层问题,本质上是将图作为要优化的超参数。我们的实验表明,图的小扰动始终导致图卷积网络性能的大幅下降,甚至转移到无监督嵌入。值得注意的是,我们的算法产生的扰动会误导图神经网络,使它们的性能比忽略所有关系信息的简单基线差。我们的攻击不假定对目标分类器有任何知识或访问权限。



-END-

专 · 知

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~

专知《深度学习:算法到实战》课程全部完成!530+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
176

相关内容

Meta Learning,元学习,也叫 Learning to Learn(学会学习)。是继Reinforcement Learning(增强学习)之后又一个重要的研究分支。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

尽管生成式对抗网络(GAN)的历史并不长,但它已被广泛地研究和用于各种任务,包括其最初的目的,即合成样品的生成。然而,将GAN用于具有不同神经网络结构的不同数据类型,由于其在训练方面的局限性,使得模型很容易出现混乱。这种臭名昭著的GAN训练是众所周知的,并已在许多研究中提出。因此,为了使GAN的训练更加稳定,近年来提出了许多正则化方法。本文综述了近年来引入的正则化方法,其中大部分是近三年来发表的。具体地说,我们关注的是那些可以被普遍使用的方法,而不管神经网络体系结构如何。根据其运算原理将其分为若干组,并分析了各方法之间的差异。此外,为了提供使用这些方法的实际知识,我们调研了在最先进的GANs中经常使用的流行方法。此外,我们还讨论了现有方法的局限性,并提出了未来的研究方向。

成为VIP会员查看完整内容
0
82

【导读】小样本学习是学术界和工业界近年来关注的焦点。2020年以来,AAAI、WSDM、ICLR、CVPR会议论文公布,专知小编整理了最新8篇关于知识图谱的论文,来自Google、PSU、人大、微软、腾讯、阿里巴巴等,包含元迁移学习、图神经网络、小样本文本分类等,请大家查看!

1、Graph Few-shot Learning via Knowledge Transfer(通过知识迁移的图小样本学习),AAAI2020

摘要:对于具有挑战性的半监督节点分类问题,已有广泛的研究。图神经网络(GNNs)作为一个前沿领域,近年来引起了人们极大的兴趣。然而,大多数gnn具有较浅的层,接收域有限,并且可能无法获得令人满意的性能,特别是在标记节点数量很少的情况下。为了解决这一问题,我们创新性地提出了一种基于辅助图的先验知识的图小样本学习(GFL)算法,以提高目标图的分类精度。具体来说,辅助图与目标之间共享一个可转移的度量空间,该空间以节点嵌入和特定于图的原型嵌入函数为特征,便于结构知识的传递。对四个真实世界图形数据集的大量实验和消融研究证明了我们提出的模型的有效性

论文地址:

https://arxiv.org/abs/1910.03053

2、AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning(自适应聚合GCN的小样本学习)

摘要:现有的小样本学习(FSL)方法假设源类中存在足够的训练样本,可以将知识转移到训练样本较少的目标类中。然而,这种假设通常是无效的,特别是在细粒度识别方面。在这项工作中,我们定义了一个新的FSL设置,称为few-shot fewshot learning (FSFSL),在这种情况下,源类和目标类都只有有限的训练样本。为了克服源类数据稀缺的问题,一个自然的选择是从web中抓取具有类名作为搜索关键字的图像。然而,爬行图像不可避免地会受到大量噪声(不相关的图像)的破坏,从而影响性能。针对这一问题,我们提出了一种基于GCN的图形卷积网络标签去噪(LDN)方法来去除不相关的图像。在此基础上,我们提出了一种基于gcn的清洁web图像和原始训练图像的FSL方法。针对LDN和FSL任务,提出了一种新的自适应聚合GCN (AdarGCN)模型。利用AdarGCN,可以自动确定每个图节点所携带的信息在图结构中传播了多少以及传播了多远,从而减轻了噪声和边缘训练样本的影响。大量的实验表明,我们的AdarGCN在新的FSFSL和传统的FSL设置下的优越性能。

论文地址:

https://www.zhuanzhi.ai/paper/5189982e35b0950b3dd3da91d68a5d07

3、Few-shot Natural Language Generation for Task-Oriented Dialog(面向任务对话的小样本自然语言生成)

摘要:自然语言生成(NLG)模块是面向任务的对话系统的重要组成部分,它将语义形式的对话行为转化为自然语言的响应。传统的基于模板或统计模型的成功通常依赖于大量注释的数据,这对于新领域来说是不可行的。因此,在实际应用中,如何利用有限的标记数据很好地推广NLG系统至关重要。为此,我们提出了第一个NLG基准测试FewShotWoz来模拟面向任务的对话系统中的小样本学习设置。进一步,我们提出了SC-GPT模型。通过对大量的NLG标注语料库进行预训练,获得可控的生成能力,并通过少量的领域特定标签进行微调,以适应新的领域。在FewShotWoz和大型的多领域woz数据集上进行的实验表明,所提出的SC-GPT显著优于现有的方法(通过各种自动指标和人工评估进行测量)。

论文地址:

https://www.zhuanzhi.ai/paper/16510460dca11e426c62e6d82031c7fc

4、Meta-Transfer Learning for Zero-Shot Super-Resolution(元迁移学习的零样本超分)CVPR2020

摘要:卷积神经网络(CNNs)通过使用大规模的外部样本,在单幅图像的超分辨率(SISR)方面有了显著的改善。尽管它们基于外部数据集的性能非常出色,但它们无法利用特定图像中的内部信息。另一个问题是,它们只适用于它们所监督的数据的特定条件。例如,低分辨率(LR)图像应该是从高分辨率(HR)图像向下采样的“双三次”无噪声图像。为了解决这两个问题,零样本超分辨率(ZSSR)被提出用于灵活的内部学习。然而,他们需要成千上万的梯度更新,即推理时间长。在这篇论文中,我们提出了一种利用零样本超分辨的元转移学习方法。准确地说,它是基于找到一个适合内部学习的通用初始参数。因此,我们可以利用外部和内部信息,其中一个梯度更新可以产生相当可观的结果。(见图1)。通过我们的方法,网络可以快速适应给定的图像条件。在这方面,我们的方法可以应用于一个快速适应过程中的一个大光谱的图像条件。

论文地址:

https://www.zhuanzhi.ai/paper/060b612853dfdd5af41688d50ce946d0

5、Few-shot Text Classification with Distributional Signatures(小样本文本分类)ICLR2020

摘要:在本文中,我们探讨了元学习在小样本文本分类中的应用。元学习在计算机视觉方面表现出了很强的性能,在计算机视觉中,低级模式可以在学习任务之间转移。然而,直接将这种方法应用于文本是具有挑战性的——对于一个任务来说信息丰富的词汇特性对于另一个任务来说可能是无关紧要的。因此,我们的模型不仅从单词中学习,还利用它们的分布特征,这些分布特征编码相关的单词出现模式。我们的模型在元学习框架内进行训练,将这些特征映射到注意力分数,然后用注意力分数来衡量单词的词汇表示。我们证明,我们的模型在6个基准数据集(1-shot分类平均20.0%)上,在词汇知识学习的原型网络(Snell et al., 2017)上,在小样本文本分类和关系分类上都显著优于原型网络。

论文地址:

https://arxiv.org/abs/1908.06039

  1. Evolving Losses for Unsupervised Video Representation Learning(无监督视频表示学习的损失演化)CVPR2020

摘要:我们提出了一种从大规模无标记视频数据中学习视频表示的新方法。理想情况下,这种表现形式应该是通用的、可转移的,可以直接用于新的任务,比如动作识别和零或少样本学习。我们将无监督表示法学习描述为一个多模态、多任务学习问题,其中表示法通过精馏在不同的模式之间共享。在此基础上,我们引入了损失函数演化的概念,利用进化搜索算法自动寻找包含多个(自监督)任务和模式的损失函数的最优组合。在此基础上,我们提出了一种基于Zipf法则的无监督表示法评价指标,该指标使用对一个大的未标记数据集的分布匹配作为先验约束。这种不受监督的约束,不受任何标记的引导,与受弱监督的、特定于任务的约束产生类似的结果。提出的无监督表示学习方法在单RGB网络中取得了良好的学习效果,并优于已有的学习方法。值得注意的是,它也比几种基于标签的方法(如ImageNet)更有效,除了大型的、完全标记的视频数据集。

论文地址:

https://www.zhuanzhi.ai/paper/1cd13817179b2c3e512bbf00a320b4eb

  1. Few-shot acoustic event detection via meta-learning(元学习的小概率语音事件检测)ICASSP 2020

摘要:本文研究了小样本语音事件检测技术。少样本学习能够用非常有限的标记数据检测新事件。与计算机视觉等其他研究领域相比,语音识别的样本学习研究较少。我们提出了小样本AED问题,并探索了不同的方法来利用传统的监督方法,以及各种元学习方法,这些方法通常用于解决小样本分类问题。与有监督的基线相比,元学习模型具有更好的性能,从而显示了它对新音频事件的泛化效果。我们的分析包括初始化和领域差异的影响,进一步验证了元学习方法在小样本AED中的优势。

论文地址:

https://www.zhuanzhi.ai/paper/1600398c5662ddbea82187c132819ea4

  1. Cross-Domain Few-Shot Classification via Learned Feature-Wise Transformation(跨域小样本分类)ICLR2020

摘要:小样本分类旨在识别每个类别中只有少数标记图像的新类别。现有的基于度量的小样本分类算法通过使用学习度量函数将查询图像的特征嵌入与少数标记图像(支持示例)的特征嵌入进行比较来预测类别。虽然已经证明了这些方法有很好的性能,但是由于域之间的特征分布存在很大的差异,这些方法往往不能推广到不可见的域。在这项工作中,我们解决了基于度量的方法在领域转移下的少样本分类问题。我们的核心思想是在训练阶段利用仿射变换增强图像的特征,模拟不同领域下的各种特征分布。为了捕获不同领域中特性分布的变化,我们进一步应用了一种学习-学习方法来搜索Feature-Wise转换层的超参数。我们使用5个小样本分类数据集:mini-ImageNet、CUB、Cars、Places和Plantae,在域概化设置下进行了大量的实验和消融研究。实验结果表明,所提出的特征变换层适用于各种基于度量的模型,并对域转移下的小样本分类性能提供了一致的改进。。

论文地址:

https://arxiv.org/abs/2001.08735

成为VIP会员查看完整内容
0
169

元学习已被提出作为一个框架来解决具有挑战性的小样本学习设置。关键的思想是利用大量相似的小样本任务,以学习如何使基学习者适应只有少数标记的样本可用的新任务。由于深度神经网络(DNNs)倾向于只使用少数样本进行过度拟合,元学习通常使用浅层神经网络(SNNs),因此限制了其有效性。本文提出了一种新的学习方法——元转移学习(MTL)。具体来说,“meta”是指训练多个任务,“transfer”是通过学习每个任务的DNN权值的缩放和变换函数来实现的。此外,我们还介绍了作为一种有效的MTL学习课程的困难任务元批处理方案。我们使用(5类,1次)和(5类,5次)识别任务,在两个具有挑战性的小样本学习基准上进行实验:miniImageNet和Fewshot-CIFAR100。通过与相关文献的大量比较,验证了本文提出的HT元批处理方案训练的元转移学习方法具有良好的学习效果。消融研究还表明,这两种成分有助于快速收敛和高精度。

地址:

https://arxiv.org/abs/1812.02391

代码:

https://github.com/yaoyao-liu/meta-transfer-learning

成为VIP会员查看完整内容
0
112

元学习的研究越来越受到学者们的重视,从最初在图像领域的研究逐渐拓展到其他领域,目前推荐系统领域也出现了相关的研究问题,本文介绍了5篇基于元学习的推荐系统相关论文,包括用户冷启动推荐、项目冷启动推荐等。

  1. MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation

本文提出了一种新的推荐系统,解决了基于少量样本物品来估计用户偏好的冷启动问题。为了确定用户在冷启动状态下的偏好,现有的推荐系统,如Netflix,在启动初向用户提供物品选择,我们称这些物品为候选集。然后根据用户选择的物品做出推荐。以往的推荐研究有两个局限性:(1) 只有少量物品交互行为的用户推荐效果不佳,(2) 候选集合不足,无法识别用户偏好。为了克服这两个限制,我们提出了一种基于元学习的推荐系统MeLU。从元学习中,MeLU可以通过几个例子快速地应用于新任务,通过几个消费物品来估计新用户的偏好。此外,我们提供了一个候选集合选择策略,以确定自定义偏好估计的区分项目。我们用两个基准数据集对MeLU进行了验证,与两个对比模型相比,该模型的平均绝对误差至少降低了5.92%。我们还进行了用户研究实验来验证选择策略的有效性。

  1. Meta-Learning for User Cold-Start Recommendation 冷启动问题是对实际推荐系统的长期挑战。大多数现有的推荐算法依赖于大量的观测数据,对于很少交互的推荐场景来说是脆弱的。本文用少样本学习和元学习来解决这些问题。我们的方法是基于这样一种见解,即从几个例子中有一个很好的泛化,依赖于一个通用的模型初始化和一个有效的策略来使这个模型适应新出现的任务。为了实现这一点,我们将场景指定的学习与模型无关的序列元学习结合起来,并将它们统一到一个集成的端到端框架中,即场景指定的序列元学习者(或s^2 Meta)。我们的元学习器通过聚合来自各种预测任务的上下文信息来生成一个通用的初始模型,同时通过利用学习到的知识来有效地适应特定的任务。在各种现实世界数据集上的实验表明,我们提出的模型可以在在线推荐任务中获得对冷启动问题的最好效果。

  2. Sequential Scenario-Specific Meta Learner for Online Recommendation

冷启动问题是对实际推荐系统的长期挑战。大多数现有的推荐算法依赖于大量的观测数据,对于很少交互的推荐场景来说是脆弱的。本文用少样本学习和元学习来解决这些问题。我们的方法是基于这样一种见解,即从几个例子中有一个很好的泛化,依赖于一个通用的模型初始化和一个有效的策略来使这个模型适应新出现的任务。为了实现这一点,我们将场景指定的学习与模型无关的序列元学习结合起来,并将它们统一到一个集成的端到端框架中,即场景指定的序列元学习者(或s^2 Meta)。我们的元学习器通过聚合来自各种预测任务的上下文信息来生成一个通用的初始模型,同时通过利用学习到的知识来有效地适应特定的任务。在各种现实世界数据集上的实验表明,我们提出的模型可以在在线推荐任务中获得对冷启动问题的最好效果。

  1. A Meta-Learning Perspective on Cold-Start Recommendations for Items 矩阵分解(M F)是最流行的项目(item)推荐技术之一,但目前存在严重的冷启动问题。项目冷启动问题在一些持续输出项目的平台中显得特别尖锐(比如Tweet推荐)。在本文中,我们提出了一种元学习策略,以解决新项目不断产生时的项目冷启动问题。我们提出了两种深度神经网络体系结构,实现了我们的元学习策略。第一个体系结构学习线性分类器,其权重由项目历史决定,而第二个体系结构学习一个神经网络。我们评估了我们在Tweet推荐的现实问题上的效果,实验证明了我们提出的算法大大超过了MF基线方法。

  2. One-at-a-time: A Meta-Learning Recommender-System for Recommendation-Algorithm Selection on Micro Level

推荐算法的有效性通常用评价指标来评估,如均方根误差、F1或点击率CTR,在整个数据集上计算。最好的算法通常是基于这些总体度量来选择的,然而,对于所有用户、项目和上下文来说并没有一个单独的最佳算法。因此,基于总体评价结果选择单一算法并不是最优的。在本文中,我们提出了一种基于元学习的推荐方法,其目的是为每个用户-项目对选择最佳算法。我们使用MovieLens 100K和1m数据集来评估我们的方法。我们的方法(RMSE,100K:0.973;1M:0.908)没有优于单个的最佳算法SVD++(RMSE,100k:0.942;1M:0.887)。我们还探索了元学习者之间的区别,他们在每个实例(微级别),每个数据子集(中级)和每个数据集(全局级别)上进行操作。评估表明,与使用的总体最佳算法相比,一个假设完美的微级元学习器将提高RMSE 25.5%。

成为VIP会员查看完整内容
0
61

【导读】最近小编推出CVPR2019图卷积网络、CVPR2019生成对抗网络、【可解释性】,CVPR视觉目标跟踪,CVPR视觉问答,医学图像分割,图神经网络的推荐,CVPR域自适应, ICML图神经网络相关论文,反响热烈。最近,Meta-Learning(元学习)相关研究非常火热,这两年相关论文非常多,结合最新的热点方法,在应用到自己的领域,已经是大部分研究者快速出成果的一个必备方式。基于Meta-Learning(元学习)的工作在今年ICML 2019上出现了大量的论文,好多是些理论方法,希望CV、NLP、DM或者其他领域的同学多多学习,看能否结合,期待好的工作!今天小编专门整理最新七篇Meta-Learning(元学习)—在线元学习、元强化学习、元逆强化学习、层次结构元学习、小样本学习等。

1、Sever: A Robust Meta-Algorithm for Stochastic Optimization(Sever:一种鲁棒的随机优化元算法)

ICML ’19

作者:Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, Alistair Stewart

摘要:在高维情况下,大多数机器学习方法对于哪怕是一小部分结构化异常值也是脆弱的。为了解决这一问题,我们引入了一种新的元算法,它可以接纳base learner,如最小二乘或随机梯度下降,并增强learner对异常值的抵抗力。我们的方法Sever具有强大的理论保证,但同时也具有很高的可伸缩性——除了运行base learner本身,它只需要计算某个n* d矩阵的顶部奇异向量。我们将服务器应用于药物设计数据集和垃圾邮件分类数据集,发现在这两种情况下,它都比几个baseline具有更强的鲁棒性。在垃圾邮件数据集上,有1%的损坏,我们实现了7.4%的test error, 相比之下,baseline的test error为13.4%-20.5%,未损坏数据集的test error为3%。同样,在药物设计数据集上,在10%的损坏情况下,我们获得了1.42的mean squared test error,而baseline为1.51-2.33,未损坏数据集为1.23的mean squared test error。

网址:

http://proceedings.mlr.press/v97/diakonikolas19a.html

代码链接:

https://github.com/hoonose/sever

2、Online Meta-Learning(在线元学习)

ICML ’19

作者:智能系统的一个核心能力是能够不断地利用以前的经验来加快和加强新任务的学习。两个不同的研究范式研究了这个问题。元学习将此问题视为学习优先于模型的参数,该参数可用于快速适应新任务,但通常假定任务作为批处理一起可用。相比之下,在线(regret based)学习考虑的是一个任务接一个任务地显示的环境,但传统上只训练一个模型,没有特定于任务的适应性。这项工作引入了一个在线元学习设置,它融合了两种范式的思想,以更好地捕捉持续终生学习的精神和实践。我们提出了follow the meta leader (FTML)算法,它将MAML算法扩展到这个设置。从理论上讲,这项工作提供了一个O(log T) regret guarantee,附加了一个高阶平滑度的假设(与标准的在线设置相比)。我们对三个不同的大规模问题的实验评估表明,该算法的性能显著优于传统在线学习方法。

网址:

http://proceedings.mlr.press/v97/finn19a.html

3、Taming MAML: Efficient unbiased meta-reinforcement learning(Taming MAML: 有效的无偏元强化学习)

ICML ’19

作者:Hao Liu, Richard Socher, Caiming Xiong

摘要:虽然元强化学习(meta-reinformation learning,meta-rl)方法取得了显著的成功,但如何获得正确的、低方差的policy梯度估计仍然是一个重大的挑战。特别是,估计一个大的Hessian,低样本效率和不稳定的训练继续使Meta-RL变得困难。我们提出了一个名为Taming MAML (TMAML)的替代目标函数,它通过自动微分将控制变量添加到梯度估计中。TMAML通过在不引入偏差的情况下减小方差,提高了梯度估计的质量。我们进一步提出了我们方法的一个版本,该版本将元学习框架扩展到学习控制变量本身,从而从MDPs的分布中实现高效和可伸缩的学习。我们将我们的方法与MAML和其他方差偏置权衡方法(包括DICE、LVC和action-dependent control variates)进行了经验性比较。我们的方法易于实现,并且在梯度估计的方差和精度方面优于现有的方法,最终在各种具有挑战性的Meta-RL环境中获得更高的性能。

网址:

http://proceedings.mlr.press/v97/liu19g.html

代码链接:

https://github.com/lhao499/taming-maml

4、Learning a Prior over Intent via Meta-Inverse Reinforcement Learning(通过元逆强化学习学习先验过意图)

ICML ’19

作者:Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, Chelsea Finn

摘要:将强化学习应用于实际问题的一个重大挑战是需要指定一个oracle奖励函数来正确定义任务。逆向强化学习(IRL)试图通过从专家论证中推断奖励函数来避免这一问题。虽然很吸引人,但是收集涵盖现实世界中常见变化的演示数据集(例如打开任何类型的门)可能会非常昂贵。因此,在实践中,IRL通常只能通过有限的一组演示来执行,而在这些演示中,要明确地恢复一个奖励函数是极其困难的。在这项工作中,我们利用了来自其他任务的演示可以用来约束一组可能的奖励函数这一观点,方法是学习一个“先验”,这个“先验”是专门为从有限的演示中推断表达性奖励函数的能力而优化的。我们证明了我们的方法可以有效地从新任务的图像中recover rewards,并提供关于我们的方法如何类似于学习先验的intuition。

网址:

http://proceedings.mlr.press/v97/xu19d.html

5、Hierarchically Structured Meta-learning(层次结构元学习)

ICML ’19

作者:Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li

摘要:为了在较少样本的情况下快速学习,元学习利用了从以前任务中学到的先验知识。然而,元学习的一个关键挑战是任务的不确定性和异构性,这是无法通过任务之间的全局共享知识来处理的。在基于梯度元学习的基础上,我们提出了一种层次结构的元学习(HSML)算法。受人类组织知识的方式的启发,我们采用层次任务聚类结构对任务进行聚类。因此,该方法不仅通过对不同任务集群进行知识定制来解决这一问题,而且在相似任务集群之间保持了知识的泛化。为了解决任务关系的变化,我们还将层次结构扩展到连续学习环境中。实验结果表明,该方法在toy回归和少样本图像分类问题上均能取得较好的分类效果。

网址:

http://proceedings.mlr.press/v97/yao19b.html

代码链接:

https://github.com/huaxiuyao/HSML

6、Fast Context Adaptation via Meta-Learning(通过元学习快速适应上下文)

ICML ’19

作者:Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, Shimon Whiteson

摘要:我们提出使用CAVIA进行元学习,这是对MAML的一个简单扩展,它不太容易发生元过度拟合,更容易并行化,并且更具解释性。CAVIA将模型参数划分为两部分:上下文参数(作为模型的额外输入,适用于单独的任务)和共享参数(经过元训练并在任务之间共享)。在测试时,只更新上下文参数,从而导致低维任务表示。我们的经验表明,CAVIA在回归、分类和强化学习方面优于MAML。我们的实验还突出了当前benchmark的弱点,即在某些情况下所需的适应量很小。

网址:

http://proceedings.mlr.press/v97/zintgraf19a.html

代码链接:

https://github.com/lmzintgraf/cavia

7、LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning(针对小样本问题的学习生成匹配网络方法)

ICML ’19

作者:Huaiyu Li, Weiming Dong, Xing Mei, Chongyang Ma, Feiyue Huang, Bao-Gang Hu

摘要:目前,成功的深度神经网络往往依赖于大量训练数据和训练时间,当训练数据较少时,神经网络通常容易过拟合,这是由于传统的基于梯度的更新算法没有针对当前任务的先验知识,无法在神经网络的参数空间中找到具有较好泛化能力的参数点。当一个神经网络计算结构固定的时候,网络的参数权重决定了网络的功能,而具有较好泛化能力的参数点可以看作是一个基于训练数据的条件概率分布。根据这样的观察,我们针对小样本问题提出了一种基于训练数据直接生成具有较好泛化性网络参数的元学习方法,让神经网络在大量的任务中积累经验,自己学会如何解决小样本问题。

网址:

https://arxiv.org/abs/1905.06331

代码链接:

https://github.com/likesiwell/LGM-Net/

下载链接:https://pan.baidu.com/s/1Z1e_2aB3H9IM3BeHfHZBsA 提取码:06eq

成为VIP会员查看完整内容
0
28

论文题目: Meta-Learning to Cluster

摘要: 聚类是探索性数据分析中最基本、最广泛应用的技术之一。然而,聚类的基本方法并没有真正改变:专业人员手工挑选特定于任务的聚类损失,以优化并适合给定的数据,以揭示底层聚类结构。某些类型的损失——例如k-means或其非线性版本:kernelized k-means(基于质心的)和DBSCAN(基于密度的)——由于它们在一系列应用中具有良好的经验性能,因此很受欢迎。尽管使用这些标准损失的聚类输出常常不能揭示底层结构,而且执行者必须自定义设计它们自己的变体。在这项工作中,我们采用了一种本质上不同的聚类方法:我们不是根据特定的聚类损失来拟合数据集,而是训练一个学习如何聚类的递归模型。该模型使用数据集的示例(作为输入)和相应的聚类标识(作为输出)作为训练对。通过提供多种类型的训练数据集作为输入,我们的模型能够很好地泛化不可见的数据集(新的集群任务)。实验表明,与标准的基准聚类技术相比,在简单的综合生成数据集或现有的真实数据集上进行训练,可以获得更好的聚类性能。我们的元聚类模型即使对于通常的深度学习模型表现较差的小数据集也能很好地工作。

作者: Yibo Jiang, Nakul Verma

成为VIP会员查看完整内容
0
36

近年来,零样本学习(ZSL,zero-shot learning)已经在大量的任务中受到了广泛的关注。大多数机器学习方法,均侧重于那些训练集中广泛存在的样本进行分类。但现实场景中,许多的任务需要对从未见过的样本进行分类。零样本学习是一种非常强大的学习范式,本篇综述,首先,概述了零样本学习,根据学习过程中使用到的数据模型,我们将其划分为三种学习类型;第二,描述了零样本学习过程中所采用的不同语义空间;第三,对现有零样本学习方法进行了分类,并在每个类别下介绍了具有代表性的方法;第四,讨论了零样本学习的不同应用方向;最后,我们介绍了零样本学习的未来研究方向。

成为VIP会员查看完整内容
A Survey of Zero-Shot Learning.pdf
0
82
小贴士
相关VIP内容
相关论文
A Survey on Bayesian Deep Learning
Hao Wang,Dit-Yan Yeung
44+阅读 · 2020年7月2日
Matthias Fey,Jan-Gin Yuen,Frank Weichert
4+阅读 · 2020年6月22日
Meta-Learning to Cluster
Yibo Jiang,Nakul Verma
13+阅读 · 2019年10月30日
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
Risto Vuorio,Shao-Hua Sun,Hexiang Hu,Joseph J. Lim
22+阅读 · 2019年10月30日
Meta-Learning with Implicit Gradients
Aravind Rajeswaran,Chelsea Finn,Sham Kakade,Sergey Levine
7+阅读 · 2019年9月10日
Kwonjoon Lee,Subhransu Maji,Avinash Ravichandran,Stefano Soatto
4+阅读 · 2019年4月23日
Yingtian Zou,Jiashi Feng
6+阅读 · 2019年4月19日
Few-shot Learning: A Survey
Yaqing Wang,Quanming Yao
320+阅读 · 2019年4月10日
Joaquin Vanschoren
115+阅读 · 2018年10月8日
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu,Dushyant Rao,Jakub Sygnowski,Oriol Vinyals,Razvan Pascanu,Simon Osindero,Raia Hadsell
6+阅读 · 2018年7月16日
Top