This survey hinges on the interplay between regularity and approximation for linear and quasi-linear fractional elliptic problems on Lipschitz domains. For the linear Dirichlet integral Laplacian, after briefly recalling H\"older regularity and applications, we discuss novel optimal shift theorems in Besov spaces and their Sobolev counterparts. These results extend to problems with finite horizon and are instrumental for the subsequent error analysis. Moreover, we dwell on extensions of Besov regularity to the fractional $p$-Laplacian, and review the regularity of fractional minimal graphs and stickiness. We discretize these problems using continuous piecewise linear finite elements and derive global and local error estimates for linear problems, thereby improving some existing error estimates for both quasi-uniform and graded meshes. We also present a BPX preconditioner which turns out to be robust with respect to both the fractional order and the number of levels. We conclude with the discretization of fractional quasi-linear problems and their error analysis. We illustrate the theory with several illuminating numerical experiments.
翻译:这一调查取决于利普西茨域线性和准线性分数性椭圆问题的规律性和近似性之间的相互作用。 对于线性 Diriclet 集成的拉普拉西亚人,我们简要回顾H\"老的规律性和应用,我们讨论贝索夫空间及其Sobolev对等空间的新颖最佳变化理论。这些结果涉及有限地平线问题,有助于随后的误差分析。此外,我们探讨Besov 的规律性延伸至分数 $p$-拉普拉西亚的分数性,并审查小数性最小图的规律性和粘性。我们使用连续的分解线性线性线性线性线性定值元素将这些问题分解出来,并得出线性问题的全球和局部误差估计,从而改进准统一和分级的介面的某些现有误差估计。我们还提出了一个BPX先决条件,该先决条件在分序和等级数量方面都非常可靠。我们以分解的准线性问题及其误差性分析为结论。我们用若干解的数字实验来说明理论。