We design an adaptive virtual element method (AVEM) of lowest order over triangular meshes with hanging nodes in 2d, which are treated as polygons. AVEM hinges on the stabilization-free a posteriori error estimators recently derived in [8]. The crucial property, that also plays a central role in this paper, is that the stabilization term can be made arbitrarily small relative to the a posteriori error estimators upon increasing the stabilization parameter. Our AVEM concatenates two modules, GALERKIN and DATA. The former deals with piecewise constant data and is shown in [8] to be a contraction between consecutive iterates. The latter approximates general data by piecewise constants to a desired accuracy. AVEM is shown to be convergent and quasi-optimal, in terms of error decay versus degrees of freedom, for solutions and data belonging to appropriate approximation classes. Numerical experiments illustrate the interplay between these two modules and provide computational evidence of optimality.
翻译:我们设计了一种适应性虚拟元素方法(AVEM),该方法在以2d上吊节点的三角贝壳上排列为最低顺序,作为多边形处理。AVEM以最近在[8]中得出的后端误差估计值为基准。关键属性在本文件中也发挥着核心作用,即稳定值相对于后端误差估计值在增加稳定参数时可以任意变小。我们的AVEM将两个模块(GALERKIN和DATA)合并为两个模块(GALERIN和DATA)。前一个模块处理按片常数计算的数据,在[8]中显示为连续迭代之间的缩缩缩。后一个模块以按片段常数的常数比较一般数据,达到预期的精确度。AVEM在误差与自由度的衰减方面显示是准的,用于属于适当近似等级的解决方案和数据。数字实验显示这两个模块之间的相互作用,并提供最佳的计算证据。</s>