In this paper, a temporal nonuniform $L1$ type difference scheme is built up for the time fractional diffusion-wave equation with the help of the order reduction technique. The unconditional convergence of the nonuniform difference scheme is proved rigorously in $L^2$ norm. Our main tool is the discrete complementary convolution kernels with respect to the coefficient kernels of the L1 type formula. The positive definiteness of the complementary convolution kernels is shown to be vital to the stability and convergence. To the best of our knowledge, this property is proved at the first time on the nonuniform time meshes. Two numerical experiments are presented to verify the accuracy and the efficiency of the proposed numerical methods.
翻译:在本文中,在减少订单技术的帮助下,为时分扩散波方程式建立了一个时间上不统一的1美元类型差异方案。不统一差异方案无条件的趋同以美元为标准得到了严格的证明。我们的主要工具是L1型公式的系数内核的互不相干的补充进化内核。补充式内核的正确定性对于稳定性和趋同性至关重要。据我们所知,这一属性首次在非统一时的模件上得到证明。提出了两个数字实验,以核实拟议的数字方法的准确性和有效性。</s>