A common recent approach to semantic parsing augments sequence-to-sequence models by retrieving and appending a set of training samples, called exemplars. The effectiveness of this recipe is limited by the ability to retrieve informative exemplars that help produce the correct parse, which is especially challenging in low-resource settings. Existing retrieval is commonly based on similarity of query and exemplar inputs. We propose GandR, a retrieval procedure that retrieves exemplars for which outputs are also similar. GandRfirst generates a preliminary prediction with input-based retrieval. Then, it retrieves exemplars with outputs similar to the preliminary prediction which are used to generate a final prediction. GandR sets the state of the art on multiple low-resource semantic parsing tasks.
翻译:最近一种常见的语义分解方法,通过检索和附加一套培训样本,即称为Exemplars,来增加序列到序列的序列模型。这个配方的效力受到以下因素的限制:能够检索有助于产生正确分析的信息化示例,这在低资源环境下尤其具有挑战性。现有的检索通常基于查询和示例输入的相似性。我们提议GandR,这是一个检索输出也相似的示例模型的检索程序。 GandR First 以基于输入的检索方式生成了初步预测。然后,它取回了与用于产生最终预测的初步预测的类似产出的示例。 GandR 设定了多种低资源语义区分任务的先进状态。