语义分析的最终目的是理解句子表达的真实语义。但是,语义应该采用什么表示形式一直困扰着研究者们,至今这个问题也没有一个统一的答案。语义角色标注(semantic role labeling)是目前比较成熟的浅层语义分析技术。基于逻辑表达的语义分析也得到学术界的长期关注。

VIP内容

题目: Natural Language Processing and Query Expansion

简介:

大量知识资源的可用性刺激了开发和增强信息检索技术的大量工作。用户的信息需求以自然语言表达,成功的检索很大程度上取决于预期目的的有效沟通。自然语言查询包含多种语言功能,这些语言功能代表了预期的搜索目标。导致语义歧义和对查询的误解以及其他因素(例如,对搜索环境缺乏了解)的语言特征会影响用户准确表示其信息需求的能力,这是由概念意图差距造成的。后者直接影响返回的搜索结果的相关性,而这可能不会使用户满意,因此是影响信息检索系统有效性的主要问题。我们讨论的核心是通过手动或自动捕获有意义的术语,短语甚至潜在的表示形式来识别表征查询意图及其丰富特征的重要组成部分,以手动或自动捕获它们的预期含义。具体而言,我们讨论了实现丰富化的技术,尤其是那些利用从文档语料库中的术语相关性的统计处理或从诸如本体之类的外部知识源中收集的信息的技术。我们提出了基于通用语言的查询扩展框架的结构,并提出了基于模块的分解,涵盖了来自查询处理,信息检索,计算语言学和本体工程的主题问题。对于每个模块,我们都会根据所使用的技术回顾分类和分析的文献中的最新解决方案。

成为VIP会员查看完整内容
0
35

最新论文

Extracting temporal relations among events from unstructured text has extensive applications, such as temporal reasoning and question answering. While it is difficult, recent development of Neural-symbolic methods has shown promising results on solving similar tasks. Current temporal relation extraction methods usually suffer from limited expressivity and inconsistent relation inference. For example, in TimeML annotations, the concept of intersection is absent. Additionally, current methods do not guarantee the consistency among the predicted annotations. In this work, we propose SMARTER, a neural semantic parser, to extract temporal information in text effectively. SMARTER parses natural language to an executable logical form representation, based on a custom typed lambda calculus. In the training phase, dynamic programming on denotations (DPD) technique is used to provide weak supervision on logical forms. In the inference phase, SMARTER generates a temporal relation graph by executing the logical form. As a result, our neural semantic parser produces logical forms capturing the temporal information of text precisely. The accurate logical form representations of an event given the context ensure the correctness of the extracted relations.

0
0
下载
预览
参考链接
子主题
Top