Autonomous mobile manipulation robots that can collect trolleys are widely used to liberate human resources and fight epidemics. Most prior robotic trolley collection solutions only detect trolleys with 2D poses or are merely based on specific marks and lack the formal design of planning algorithms. In this paper, we present a novel mobile manipulation system with applications in luggage trolley collection. The proposed system integrates a compact hardware design and a progressive perception and planning framework, enabling the system to efficiently and robustly collect trolleys in dynamic and complex environments. For the perception, we first develop a 3D trolley detection method that combines object detection and keypoint estimation. Then, a docking process in a short distance is achieved with an accurate point cloud plane detection method and a novel manipulator design. On the planning side, we formulate the robot's motion planning under a nonlinear model predictive control framework with control barrier functions to improve obstacle avoidance capabilities while maintaining the target in the sensors' field of view at close distances. We demonstrate our design and framework by deploying the system on actual trolley collection tasks, and their effectiveness and robustness are experimentally validated.
翻译:能够收集电车的自动机动操纵机器人被广泛用于解放人力资源和防治流行病。多数先前的机械式电车收集解决方案只能探测2D装或仅仅基于特定标记的推车,并且缺乏规划算法的正式设计。在本文中,我们提出了一个新型的移动操纵系统,在行李推车收集中应用了各种应用。拟议系统整合了一个紧凑的硬件设计和一个渐进的感知和规划框架,使系统能够在动态和复杂环境中高效和有力地收集推车。关于感知,我们首先开发了3D推车探测方法,将物体探测和关键点估计结合起来。然后,在很短的距离内实现对接过程,使用精确的点云层探测方法和新的操纵器设计。在规划方面,我们根据非线性模型预测控制框架制定机器人的动作规划,用控制屏障功能提高避免障碍的能力,同时在近距离的传感器领域维持目标。我们通过将系统用于实际的电车收集任务来展示我们的设计和框架,其有效性和坚固性得到实验性验证。