We exploit the complementary strengths of vision and proprioception to achieve point goal navigation in a legged robot. Legged systems are capable of traversing more complex terrain than wheeled robots, but to fully exploit this capability, we need the high-level path planner in the navigation system to be aware of the walking capabilities of the low-level locomotion policy on varying terrains. We achieve this by using proprioceptive feedback to estimate the safe operating limits of the walking policy, and to sense unexpected obstacles and terrain properties like smoothness or softness of the ground that may be missed by vision. The navigation system uses onboard cameras to generate an occupancy map and a corresponding cost map to reach the goal. The FMM (Fast Marching Method) planner then generates a target path. The velocity command generator takes this as input to generate the desired velocity for the locomotion policy using as input additional constraints, from the safety advisor, of unexpected obstacles and terrain determined speed limits. We show superior performance compared to wheeled robot (LoCoBot) baselines, and other baselines which have disjoint high-level planning and low-level control. We also show the real-world deployment of our system on a quadruped robot with onboard sensors and compute. Videos at https://navigation-locomotion.github.io/camera-ready
翻译:我们利用视觉和自我定位的互补优势,在一个脚步机器人中实现点目标导航; 腿式系统能够比轮式机器人更复杂的地形,但为了充分利用这一能力,我们需要导航系统高级路径规划员了解不同地形低水平移动政策的行走能力; 我们利用自我认知反馈来估计行走政策的安全操作限制,并感知出乎意料的障碍和地形特性,例如平滑或地面的软软性,这些障碍和地形特征可能会被视而不见。 导航系统使用机载相机绘制占用图和相应的成本地图来达到目标。 FMM(快速进取方法)规划员随后制作目标路径。 速度指令器将之作为投入,利用安全顾问的额外限制,来估计行走政策的安全操作限制,并用意想不到的障碍和地形确定的速度限制来达到这一目的。 我们展示了与轮式机器人(LocoBot) 基线相比的优异性性表现, 以及其它基线已经使高层规划和低水平移动控制系统脱节和低级别控制。 我们还在地面上展示了真实世界传感器。