We introduce a hitting set generator for Polynomial Identity Testing based on evaluations of low-degree univariate rational functions at abscissas associated with the variables. Despite the univariate nature, we establish an equivalence up to rescaling with a generator introduced by Shpilka and Volkovich, which has a similar structure but uses multivariate polynomials in the abscissas. We study the power of the generator by characterizing its vanishing ideal, i.e., the set of polynomials that it fails to hit. Capitalizing on the univariate nature, we develop a small collection of polynomials that jointly produce the vanishing ideal. As corollaries, we obtain tight bounds on the minimum degree, sparseness, and partition class size of set-multilinearity in the vanishing ideal. Inspired by an alternating algebra representation, we develop a structured deterministic membership test for the vanishing ideal. As a proof of concept, we rederive known derandomization results based on the generator by Shpilka and Volkovich and present a new application for read-once oblivious algebraic branching programs.
翻译:我们根据对与变量相关的腹部和腹部低度单独理性功能的评估,引入了多式身份测试的触发装置。尽管存在未受允许的性质,但我们还是与Shpilka和Volkovich推出的发电机建立了等效体,该发电机的结构类似,但在腹部使用多变多式多线性。我们通过描述其消失的理想特征来研究发电机的力量,即它未能击败的一组多元名牌。利用未受允许的自然,我们开发了一小部分多元名牌,共同产生消亡的理想。作为卷轴,我们在消亡的理想中获得了最小度、稀疏度和分区级定多线性最小值的严格界限。受交替的代数代表的启发,我们为消亡的理想制定了结构化的确定性成员资格测试。作为概念的证明,我们根据Shpilka和伏尔克洛维奇的生成的发电机,重新定义已知的脱机体化结果,并正在使用新的重新应用系统进行读取。