Research questions across a diverse array of fields are formulated as a Partial Conjunction Hypothesis (PCH) tests, which combine information across $m$ base hypotheses to determine whether some subset is non-null. However, standard methods for testing a PCH can be highly conservative. In this paper, we introduce the conditional PCH (cPCH) test, a new framework for testing a single PCH that directly corrects the conservativeness of standard approaches by conditioning on certain order statistics of the base p-values. Under distributional assumptions commonly encountered in PCH testing, the cPCH test produces a p-value that is very nearly uniform. Through simulations, we demonstrate that the cPCH test uniformly outperforms standard single PCH tests and maintains Type I error control even under model misspecification, and can in certain situations also be used to outperform state-of-the-art PCH multiple testing procedures. Finally, we illustrate an application of the cPCH test on a replicability analysis of four microarray studies.
翻译:一系列不同领域的研究问题是作为部分交错假设(PCH)测试而拟订的,该测试结合了美元基底假设的信息,以确定某些子集是否非中值。然而,测试PCH的标准方法可能非常保守。在本文中,我们引入了有条件的PCH(cPCH)测试,这是一个测试单一PCH(cPCH)测试的新框架,该测试标准方法的保守性直接以基本p价值的某些定序统计为条件。在PCH测试中常见的分布假设下,CPCH测试产生了一种几乎统一的p值。通过模拟,我们证明CPCH测试统一地优于标准单项PCH测试,即使在模型的错误区分下也维持了类型I的错误控制,在某些情况下,还可以用来超越最先进的PCH多重测试程序。最后,我们举例说明了CPCH测试在四种微粒子研究的可复制性分析中的应用情况。