Consider $n$ points independently sampled from a density $p$ of class $\mathcal{C}^2$ on a smooth compact $d$-dimensional sub-manifold $\mathcal{M}$ of $\mathbb{R}^m$, and consider the generator of a random walk visiting these points according to a transition kernel $K$. We study the almost sure uniform convergence of this operator to the diffusive Laplace-Beltrami operator when $n$ tends to infinity. This work extends known results of the past 15 years. In particular, our result does not require the kernel $K$ to be continuous, which covers the cases of walks exploring $k$NN-random and geometric graphs, and convergence rates are given. The distance between the random walk generator and the limiting operator is separated into several terms: a statistical term, related to the law of large numbers, is treated with concentration tools and an approximation term that we control with tools from differential geometry. The convergence of $k$NN Laplacians is detailed.
翻译:考虑从一个密度为$mathcal{C%%2美元(美元)的单价中独立抽取的美元点数,从一个纯度为$mathbb{R%m$(美元)的单价中取出,考虑一个随机漫步访问这些点的产生方(美元),根据一个过渡核心 $K$(美元) 来考虑。我们研究这个操作者几乎可以肯定地与 diffusive Laplace-Beltrami 操作员的一致,当美元倾向于无限时,这个操作者与diffusive Laplace-Beltrami 操作员的一致程度几乎一致。 这项工作延续了过去15年的已知结果。 特别是, 我们的结果并不要求核心$K$( $K$) 持续持续进行, 包括探索 $k$NND和 几何图的步行情况, 以及汇合率。 随机漫步发电机和限制操作员之间的距离分为几个术语: 一个与大数法则有关的统计术语, 正在用不同的几何测量工具来处理, 一个我们控制的近似术语。 。 $k$NNNND Laplacecian 详细的合并。