In 2017, Krenn reported that certain problems related to the perfect matchings and colourings of graphs emerge out of studying the constructability of general quantum states using modern photonic technologies. He realized that if we can prove that the \emph{weighted matching index} of a graph, a parameter defined in terms of perfect matchings and colourings of the graph is at most 2, that could lead to exciting insights on the potential of resources of quantum inference. Motivated by this, he conjectured that the {weighted matching index} of any graph is at most 2. The first result on this conjecture was by Bogdanov, who proved that the \emph{(unweighted) matching index} of graphs (non-isomorphic to $K_4$) is at most 2, thus classifying graphs non-isomorphic to $K_4$ into Type 0, Type 1 and Type 2. By definition, the weighted matching index of Type 0 graphs is 0. We give a structural characterization for Type 2 graphs, using which we settle Krenn's conjecture for Type 2 graphs. Using this characterization, we provide a simple $O(|V||E|)$ time algorithm to find the unweighted matching index of any graph. In view of our work, Krenn's conjecture remains to be proved only for Type 1 graphs. We give upper bounds for the weighted matching index in terms of connectivity parameters for such graphs. Using these bounds, for a slightly simplified version, we settle Krenn's conjecture for the class of graphs with vertex connectivity at most 2 and the class of graphs with maximum degree at most 4. Krenn has been publicizing his conjecture in various ways since 2017. He has even declared a reward for a resolution of his conjecture. We hope that this article will popularize the problem among computer scientists.


翻译:2017年, Krenn 报告说, 与图形的完美匹配和颜色相关的某些问题出现在使用现代光度技术研究普通量子状态构建性的过程中。 他意识到, 如果我们能够证明图形( 一个图形的完美匹配和颜色定义的参数最多为2, 这可能导致对量子推断资源潜力的令人兴奋的洞察力。 受此启发, 他推测任何图形的{ 加权匹配指数} 最多为 2 2 。 这个预测的第一个结果是 Bogdanov, 他证明了一个图形( 一个非光度匹配和图形颜色的匹配指数 ) 的\ emph{ (未加权) 匹配索引} 。 一个图形( 一个非光度匹配值为 $4 4 ) 的参数, 从而将非光度的图形分类为 0 类型 1 和 类型 2 。 我们的正值匹配指数的指数是 0 。 我们用 2 类型 的 的 的 结构描述, 我们用直径端的直径直值 直径的直径的直径直径直径直径直径直值 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
84+阅读 · 2020年12月5日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
84+阅读 · 2020年12月5日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员