Gaussian processes provide a powerful probabilistic kernel learning framework, which allows learning high quality nonparametric regression models via methods such as Gaussian process regression. Nevertheless, the learning phase of Gaussian process regression requires massive computations which are not realistic for large datasets. In this paper, we present a Gauss-Legendre quadrature based approach for scaling up Gaussian process regression via a low rank approximation of the kernel matrix. We utilize the structure of the low rank approximation to achieve effective hyperparameter learning, training and prediction. Our method is very much inspired by the well-known random Fourier features approach, which also builds low-rank approximations via numerical integration. However, our method is capable of generating high quality approximation to the kernel using an amount of features which is poly-logarithmic in the number of training points, while similar guarantees will require an amount that is at the very least linear in the number of training points when random Fourier features. Furthermore, the structure of the low-rank approximation that our method builds is subtly different from the one generated by random Fourier features, and this enables much more efficient hyperparameter learning. The utility of our method for learning with low-dimensional datasets is demonstrated using numerical experiments.


翻译:Gaussian 进程提供了一个强大的概率内核学习框架, 从而可以通过诸如 Gaussian 进程回归法等方法学习高质量的非参数回归模型。 然而, Gaussian 进程回归的学习阶段需要大规模计算,这对于大型数据集来说是不现实的。 在本文中, 我们提出了一个基于 Gauss- Legendre 二次曲线的方法, 以便通过内核的低级别近似值来提升Gaussian 进程回归。 我们使用低级别近似结构来实现有效的超参数学习、培训和预测。 我们的方法在很大程度上受到众所周知的随机Fourier 特征的启发, 该方法也通过数字整合建立低级近似值。 然而, 我们的方法能够利用在培训点数量中具有多式对数的特性生成高质量近似值, 而类似的保证则需要数量在随机的Fourier 特征下等培训点数中为最不线的数值。 此外, 我们的方法构建的低级近似结构与一个已知的随机的 Fourier 方法结构, 与通过随机的四维模型生成的低位化数据模型, 使得我们的方法与一个随机的多维的多维数据实验成为了高端的模拟学习方法。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Function Approximation via Sparse Random Features
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月1日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员