The unscented Kalman inversion (UKI) method presented in [1] is a general derivative-free approach for the inverse problem. UKI is particularly suitable for inverse problems where the forward model is given as a black box and may not be differentiable. The regularization strategies, convergence property, and speed-up strategies [1,2] of the UKI are thoroughly studied, and the method is capable of handling noisy observation data and solving chaotic inverse problems. In this paper, we study the uncertainty quantification capability of the UKI. We propose a modified UKI, which allows to well approximate the mean and covariance of the posterior distribution with an uninformative prior for identifiable (well-posed) inverse problems. Theoretical guarantees for both linear and nonlinear inverse problems are presented. Numerical results, including learning of permeability parameters in subsurface flow and of the Navier-Stokes initial condition from solution data at positive times are presented. The results obtained by the UKI require only $O(10)$ iterations, and match well with the expected results obtained by the Markov Chain Monte Carlo method.
翻译:[1] 中提出的非中度 Kalman 翻版方法(UKI) 是针对反问题的一种一般无衍生物化方法。 UKI 特别适合反向问题,因为远期模型被定为黑盒,可能无法区分。 UKI 的正规化战略、趋同属性和加速战略[1,2] 得到了彻底研究,该方法能够处理噪音观测数据和解决混乱反向问题。在本文中,我们研究了UKI 的不确定性量化能力。我们建议修改UII, 以便能够在可识别(有效)反问题之前,以非信息规范的方式,非常接近后端分布的平均值和共差值。线性和非线性反性问题的理论保障得到了介绍。数字结果,包括从正时的解决方案数据中学习了地表下流的渗透参数和Navier-Stokes的初始条件。 UKI只要求10美元的迭代数,并与Markov Conte Carlo方法的预期结果相匹配。