The causal effect of an intervention (treatment/exposure) on an outcome can be estimated by: i) specifying knowledge about the data-generating process; ii) assessing under what assumptions a target quantity, such as for example a causal odds ratio, can be identified given the specified knowledge (and given the measured data); and then, iii) using appropriate statistical estimation techniques to estimate the desired parameter of interest. As regression is the cornerstone of statistical analysis, it seems obvious to ask: is it appropriate to use estimated regression parameters for causal effect estimation? It turns out that using regression for effect estimation is possible, but typically requires more assumptions than competing methods. This manuscript provides a comprehensive summary of the assumptions needed to identify and estimate a causal parameter using regression and, equally important, discusses the resulting implications for statistical practice.
翻译:干预(处理/接触)对结果的因果关系可以通过以下方式估计:一) 具体说明关于数据产生过程的知识;二) 评估在何种假设下可以确定目标数量,例如因果概率比;根据特定知识(并参照计量数据);然后,三) 使用适当的统计估计技术估计所需关注参数。由于回归是统计分析的基石,显然可以要求:使用估计回归参数进行因果效应估计是否合适?事实证明,使用回归参数进行效果估计是可能的,但通常需要更多的假设,而不是相互竞争的方法。该手稿全面概述了利用回归确定和估计因果参数所需的假设,同样重要的是,讨论由此对统计实践产生的影响。