Motivated by mapping adverse artifactual events caused by body movements in electroencephalographic (EEG) signals, we present a functional independent component analysis based on the spectral decomposition of the kurtosis operator of a smoothed principal component expansion. A discrete roughness penalty is introduced in the orthonormality constraint of the covariance eigenfunctions in order to obtain the smoothed basis for the proposed independent component model. To select the tuning parameters, a cross-validation method that incorporates shrinkage is used to enhance the performance on functional representations with large basis dimension. This method provides an estimation strategy to determine the penalty parameter and the optimal number of components. Our independent component approach is applied to real EEG data to estimate genuine brain potentials from a contaminated signal. As a result, it is possible to control high-frequency remnants of neural origin overlapping artifactual sources to optimize their removal from the signal. An R package implementing our methods is available at CRAN.


翻译:在绘制电子脑图信号中身体运动引起的有害文物事件图时,我们根据平滑主要部件扩展的神经系统操作员的光谱分解情况,进行了功能独立的部件分析,对共发性天体功能的异常性限制实行离散粗糙处罚,以便获得拟议独立部件模型的平稳基础。为选择调试参数,采用了包含缩缩缩的交叉验证方法,以提高功能表现的功能性能,该方法提供了确定惩罚参数和组件最佳数量的估算战略。我们的独立部件方法用于实际的EEG数据,以估计受污染信号的真正脑潜力。因此,有可能控制高频神经源重叠的文物源残余,以优化信号的去除。CRAN提供了一套实施我们方法的R软件。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月19日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员