This paper develops the theory and methods for modeling a stationary count time series via Gaussian transformations. The techniques use a latent Gaussian process and a distributional transformation to construct stationary series with very flexible correlation features that can have any pre-specified marginal distribution, including the classical Poisson, generalized Poisson, negative binomial, and binomial structures. Gaussian pseudo-likelihood and implied Yule-Walker estimation paradigms, based on the autocovariance function of the count series, are developed via a new Hermite expansion. Particle filtering and sequential Monte Carlo methods are used to conduct likelihood estimation. Connections to state space models are made. Our estimation approaches are evaluated in a simulation study and the methods are used to analyze a count series of weekly retail sales.
翻译:本文通过Gaussian变异,开发了固定计时序列模型的理论和方法。这些技术使用潜伏高山过程和分布式变异来构建具有非常灵活相关特征的固定系列,这些特征可以具有任何预先指定的边际分布,包括古典Poisson、通用Poisson、负二进制和二进制结构。根据计数序列的自动变异功能,高斯伪类似和隐含的Yule-Walker估计模式是通过新的Hermite扩展而开发的。采用了粒子过滤和连续的Monte Carlo方法来进行概率估计。与国家空间模型的连接。模拟研究对我们的估算方法进行了评估,并使用这些方法分析周零售量的计算系列。