We derive an augmented Krylov subspace method with subspace recycling for computing a sequence of matrix function applications on a set of vectors. The matrix is either fixed or changes as the sequence progresses. We assume consecutive matrices are closely related, but make no assumptions on the relationship between the vectors. We present three versions of the method with different practical implementations. We demonstrate the effectiveness of the method using a range of numerical experiments with a selection of functions and matrices. We primarily focus our attention on the sign function arising in the overlap formalism of lattice QCD.
翻译:我们获得了一种扩大的Krylov 子空间方法,通过子空间循环利用来计算一组矢量上的矩阵功能应用序列。矩阵要么固定,要么随着序列的进展而变化。我们假设连续矩阵是密切相关的,但对矢量之间的关系不作任何假设。我们提出了三种不同实际操作的方法版本。我们用一系列的函数和矩阵选择数字实验来证明该方法的有效性。我们主要关注拉蒂斯 QCD 的重叠形式所产生的符号功能。