项目名称: 有理 Krylov 子空间算法的最优参数选取

项目编号: No.11526166

项目类型: 专项基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 林一丁

作者单位: 西南财经大学

项目金额: 3万元

中文摘要: 有理 Krylov 子空间算法是求解大规模矩阵问题的一种重要算法。它在特征值问题,模型降阶问题,矩阵方程求解等方面都有广泛的应用。有理 Krylov 子空间算法能否成功在很大程度上取决于参数的选取是否合适。因此,研究最优参数的选取理论和快速算法是十分必要的。本项目拟做如下的研究工作:针对代数 Riccati 方程以及几类模型降阶问题的有理 Krylov 子空间算法,建立最优参数的选取理论;研究参数与投影矩阵的 Ritz 值之间的关系问题,分析参数和 Ritz 值的变化将如何影响有理 Krylov 子空间算法的收敛速度;设计新的最优参数选取算法。在本项目中,会进行大量数值实验来表明理论结果的正确性以及新的选取算法的高效性。

中文关键词: 有理Krylov 子空间;调和 Ritz 值;模型降阶;最优参数;H无穷范数

英文摘要: The rational Krylov subspace method is one of the most important methods in dealing with large-scale problems. It has a wide range of applications, such as eigenvalue problems, model reduction problems and matrix equations. Whether the method is successful largely depends on the choice of the parameters. Therefore, it is necessary and important to explore the optimization theory for the parameters. In this project, we do the following researches: firstly, we set up a theory on the optimal choice of the parameters for the rational Krylov subspace methods,which are used for solving the algebraic Riccati equations and some model reduction problems. Secondly, we put forward the relations between the parameters and the Ritz values from the projection matrix. It is also analyzed how these values influence the convergence rate of the rational Krylov subspace method. Finally, we devise new algorithms for obtaining the optimal parameters. Numerical experiments are done to verify the validity of the theoretical analysis and to illustrate the advantage of the new algorithms.

英文关键词: Rational Krylov subspace;harmonic Ritz values;model order reduction;optimal parameters;H infinity norm

成为VIP会员查看完整内容
0

相关内容

【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
81+阅读 · 2021年11月16日
专知会员服务
36+阅读 · 2021年9月12日
专知会员服务
39+阅读 · 2021年8月20日
专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
25+阅读 · 2021年7月22日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
114+阅读 · 2020年11月2日
【NeurIPS2020-北大】非凸优化裁剪算法的改进分析
专知会员服务
29+阅读 · 2020年10月11日
专知会员服务
20+阅读 · 2020年9月2日
专知会员服务
43+阅读 · 2020年7月29日
【NeurIPS'21】从典型相关分析到自监督图表示学习
【经典书】凸优化:算法与复杂度,130页pdf
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
Challenges for Open-domain Targeted Sentiment Analysis
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
81+阅读 · 2021年11月16日
专知会员服务
36+阅读 · 2021年9月12日
专知会员服务
39+阅读 · 2021年8月20日
专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
25+阅读 · 2021年7月22日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
114+阅读 · 2020年11月2日
【NeurIPS2020-北大】非凸优化裁剪算法的改进分析
专知会员服务
29+阅读 · 2020年10月11日
专知会员服务
20+阅读 · 2020年9月2日
专知会员服务
43+阅读 · 2020年7月29日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员