We investigate the nonparametric bivariate additive regression estimation in the random design and long-memory errors and construct adaptive thresholding estimators based on wavelet series. The proposed approach achieves asymptotically near-optimal convergence rates when the unknown function and its univariate additive components belong to Besov space. We consider the problem under two noise structures; (1) homoskedastic Gaussian long memory errors and (2) heteroskedastic Gaussian long memory errors. In the homoskedastic long-memory error case, the estimator is completely adaptive with respect to the long-memory parameter. In the heteroskedastic long-memory case, the estimator may not be adaptive with respect to the long-memory parameter unless the heteroskedasticity is of polynomial form. In either case, the convergence rates depend on the long-memory parameter only when long-memory is strong enough, otherwise, the rates are identical to those under i.i.d. errors. The proposed approach is extended to the general $r$-dimensional additive case, with $r>2$, and the corresponding convergence rates are free from the curse of dimensionality.


翻译:我们调查随机设计和长期模拟误差中的非对称双差添加回归估计,并根据波盘序列构建适应性阈值估计值。拟议方法在未知函数及其单象形添加元件属于贝索夫空间的情况下,实现无症状的接近最佳的趋同率。我们根据两种噪音结构来考虑问题:(1) 单调高斯长的记忆错误和(2) 长记忆错误。在同吻长的长模型误差案例中,估计器完全适应长模参数。在长期模范参数中,估计器可能不会适应长模数参数,除非电感性高斯长的内存错误是多式的。在这两种情况下,合并率都取决于长模数参数。在长模数长的长模拟误差中,否则,估计器与I.i.d.的数值完全相同。在长期模范长的长模范长模型中,提议的标准也许不能适应长期模范参数,除非电动的加固度是多式的。在长期模范度方法中,只有在长模范参数足够强的情况下,否则,计算率与I.$.d. d. 和相应的惯性惯度的惯性标准,拟议的惯性方法将扩展的惯性方法延伸至总加度与总加率延伸至。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Metric Distributional Discrepancy in Metric Space
Arxiv
0+阅读 · 2022年7月7日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员