We propose an adaptive optimal shrinkage algorithm with a rank estimation method for matrix denoising in the presence of high-dimensional colored and dependent noise (separable covariance). The algorithm does not depend on estimating the color and dependence structure of the noise. On the theoretical side, we study the asymptotic behavior of outlier singular values and singular vectors of the associated random matrix with a convergence rate, and apply these results to analyze the proposed adaptive optimal shrinkage algorithm and rank estimation. On the application side, we carry out simulations to demonstrate the effectiveness of the method, and apply it to study the fetal electrocardiogram signal processing challenge and the two-dimensional random tomography problem.
翻译:我们建议采用适应性最佳缩水算法,在高维彩色和依赖性噪音(可分离的共性)出现时,采用等级估计方法进行矩阵分解。算法并不取决于对噪音的颜色和依赖性结构的估计。在理论方面,我们研究相关随机矩阵的超单值和单向矢量的无症状行为及其趋同率,并将这些结果用于分析拟议的适应性最佳缩水算法和等级估计。在应用方面,我们进行模拟,以证明该方法的有效性,并应用它来研究胎儿心电图信号处理挑战和二维随机断层问题。