This paper deals with a projection least square estimator of the function $J_0$ computed from multiple independent observations on $[0,T]$ of the process $Z$ defined by $dZ_t = J_0(t)d\langle M\rangle_t + dM_t$, where $M$ is a centered, continuous and square integrable martingale vanishing at $0$. Risk bounds are established on this estimator, on an associated adaptive estimator and on an associated discrete time version used in practice. An appropriate transformation allows to rewrite the differential equation $dX_t = V(X_t)(b_0(t)dt +\sigma(t)dB_t)$, where $B$ is a fractional Brownian motion of Hurst parameter $H\in [1/2,1)$, as a model of the previous type. So, the second part of the paper deals with risk bounds on a nonparametric estimator of $b_0$ derived from the results on the projection least square estimator of $J_0$. In particular, our results apply to the estimation of the drift function in a non-autonomous Black-Scholes model and to nonparametric estimation in a non-autonomous fractional stochastic volatility model.


翻译:本文涉及一个对函数的预测最小平方估计值 $0 J_0 美元,该函数的预测最小估计值来自对 $0,T]$的多重独立观察 。 适当的转换允许重写由美元= J_0 (t) d\langle M\rangle_t + dM_t$, 美元是核心的、连续的和可平方的martingale, 以美元消失。 此估计值、 相关适应估计器和实践中使用的相关离散时间版本设定了风险界限。 适当的转换允许重写 $X_ t = V(X_ t) 美元 定义的差方方方 $Z$ (b_ 0 (t) t) ⁇ s sgmam (t) d_t 美元 美元, 其中$B$是 Hurst 参数的分数布朗运动 $H\ in [2/2, 1] 。 因此, 本文的第二部分涉及风险界限是用一个非参数估测算 $0 的 美元 模型, 从预测结果中推算为 最低平方平方 的模型, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Variance estimation in graphs with the fused lasso
Arxiv
0+阅读 · 2022年8月29日
Arxiv
0+阅读 · 2022年8月26日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员