Currently available dynamic optimization strategies for Ant Colony Optimization (ACO) algorithm offer a trade-off of slower algorithm convergence or significant penalty to solution quality after each dynamic change occurs. This paper proposes a discrete dynamic optimization strategy called Ant Colony Optimization (ACO) with Aphids, modelled after a real-world symbiotic relationship between ants and aphids. ACO with Aphids strategy is designed to improve solution quality of discrete domain Dynamic Optimization Problems (DOPs) with event-triggered discrete dynamism. The proposed strategy aims to improve the inter-state convergence rate throughout the entire dynamic optimization. It does so by minimizing the fitness penalty and maximizing the convergence speed that occurs after the dynamic change. This strategy is tested against Full-Restart and Pheromone-Sharing strategies implemented on the same ACO core algorithm solving Dynamic Multidimensional Knapsack Problem (DMKP) benchmarks. ACO with Aphids has demonstrated superior performance over the Pheromone-Sharing strategy in every test on average gap reduced by 29.2%. Also, ACO with Aphids has outperformed the Full-Restart strategy for large datasets groups, and the overall average gap is reduced by 52.5%.


翻译:当前,蚂蚁群算法的动态优化策略在较慢的算法收敛或每次动态变化后的显著解质量惩罚之间进行权衡。本文提出了一个称为“奶牛蚂蚁”的离散动态优化策略,该策略模拟了蚂蚁和蚜虫之间的实际共生关系。通过最小化解质量罚分并最大化动态变化后的收敛速度,奶牛蚂蚁策略旨在提高事件触发的离散动态领域动态优化问题的解决方案质量。该策略在解决动态多维背包问题(DMKP)基准测试时,与完全重启和信息素分享策略相比较。结果显示,平均差距减少了29.2%。此外,在大型数据集组中,奶牛蚂蚁策略的表现优于全重启策略,总体平均差距减少了52.5%。

0
下载
关闭预览

相关内容

大模型的涌现能力介绍
专知会员服务
170+阅读 · 2023年5月16日
【ICLR2022】分布外泛化的不确定性建模
专知会员服务
41+阅读 · 2022年2月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员