This paper examines scheduling problem denoted as $P|seq, ser|C_{max}$ in Graham's notation; in other words, scheduling of tasks on parallel identical machines ($P$) with sequence-dependent setups ($seq$) each performed by one of the available servers ($ser$). The goal is to minimize the makespan ($C_{max}$). We propose a Constraint Programming (CP) model for finding the optimal solution and constructive heuristics suitable for large problem instances. These heuristics are also used to provide a feasible starting solution to the proposed CP model, significantly improving its efficiency. This combined approach constructs solutions for benchmark instances of up to 20 machines and 500 tasks in 10 seconds, with makespans 3-11.5% greater than the calculated lower bounds with a 5% average. The extensive experimental comparison also shows that our proposed approaches outperform the existing ones.
翻译:暂无翻译