In crowd scenarios, predicting trajectories of pedestrians is a complex and challenging task depending on many external factors. The topology of the scene and the interactions between the pedestrians are just some of them. Due to advancements in data-science and data collection technologies deep learning methods have recently become a research hotspot in numerous domains. Therefore, it is not surprising that more and more researchers apply these methods to predict trajectories of pedestrians. This paper compares these relatively new deep learning algorithms with classical knowledge-based models that are widely used to simulate pedestrian dynamics. It provides a comprehensive literature review of both approaches, explores technical and application oriented differences, and addresses open questions as well as future development directions. Our investigations point out that the pertinence of knowledge-based models to predict local trajectories is nowadays questionable because of the high accuracy of the deep learning algorithms. Nevertheless, the ability of deep-learning algorithms for large-scale simulation and the description of collective dynamics remains to be demonstrated. Furthermore, the comparison shows that the combination of both approaches (the hybrid approach) seems to be promising to overcome disadvantages like the missing explainability of the deep learning approach.


翻译:在人群情景中,预测行人轨迹是一项复杂而具有挑战性的任务,取决于许多外部因素。现场的地形和行人之间的相互作用只是其中的一部分。由于数据科学和数据收集技术的进步,深层次学习方法最近已成为许多领域的研究热点。因此,越来越多的研究人员运用这些方法预测行人轨迹并不奇怪。本文将这些较新的深层次学习算法与广泛用于模拟行人动态的经典知识模型加以比较。它提供了两种方法的综合文献审查,探讨了技术和应用导向的差异,并讨论了开放的问题以及未来的发展方向。我们的调查指出,基于知识的模型对预测本地轨迹的适切性如今是值得怀疑的,因为深层次学习算法的高度精准性。然而,大规模模拟的深层次学习算法和集体动态描述的能力仍有待证明。此外,比较表明两种方法(混合方法)的结合似乎有望克服深层次学习方法所缺的缺点。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
45+阅读 · 2022年9月19日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员