In this paper we study shallow neural network functions which are linear combinations of compositions of activation and quadratic functions, replacing standard affine linear functions, often called neurons. We show the universality of this approximation and prove convergence rates results based on the theory of wavelets and statistical learning. We show for simple test cases that this ansatz requires a smaller numbers of neurons than standard affine linear neural networks. Moreover, we investigate the efficiency of this approach for clustering tasks with the MNIST data set. Similar observations are made when comparing deep (multi-layer) networks.
翻译:在本文中,我们研究浅神经网络功能,这些功能是激活和二次函数构成的线性组合,取代标准的直线函数,通常称为神经元。我们展示了这种近似的普遍性,并证明基于波子理论和统计学学习的趋同率结果。我们为简单测试案例显示,这种安萨兹需要的神经元数量比标准的直线神经网络要少。此外,我们还调查了这种将任务与MNIST数据集组合在一起的方法的效率。在比较深层(多层)网络时,也有类似的观察。