The natural gradient field is a vector field that lives on a model equipped with a distinguished Riemannian metric, e.g. the Fisher-Rao metric, and represents the direction of steepest ascent of an objective function on the model with respect to this metric. In practice, one tries to obtain the corresponding direction on the parameter space by multiplying the ordinary gradient by the inverse of the Gram matrix associated with the metric. We refer to this vector on the parameter space as the natural parameter gradient. In this paper we study when the pushforward of the natural parameter gradient is equal to the natural gradient. Furthermore we investigate the invariance properties of the natural parameter gradient. Both questions are addressed in an overparametrised setting.
翻译:自然梯度场是一个矢量场,它使用一个配有杰出的里曼度量的模型,如Fisher-Rao 度量,它代表了该度量模型上一个客观函数最陡峭的方向。在实践中,人们试图通过将普通梯度乘以与该度量相联的Gram矩阵的反面来获得参数空间的相应方向。我们将参数空间上的这个矢量称为自然参数梯度。在本文件中,当自然参数梯度的推向等于自然梯度时,我们研究一下。此外,我们还调查了自然参数梯度的逆差特性。这两个问题都是在一个过于相似的环境中处理的。