Intelligent robots rely on object detection models to perceive the environment. Following advances in deep learning security it has been revealed that object detection models are vulnerable to adversarial attacks. However, prior research primarily focuses on attacking static images or offline videos. Therefore, it is still unclear if such attacks could jeopardize real-world robotic applications in dynamic environments. This paper bridges this gap by presenting the first real-time online attack against object detection models. We devise three attacks that fabricate bounding boxes for nonexistent objects at desired locations. The attacks achieve a success rate of about 90\% within about 20 iterations. The demo video is available at https://youtu.be/zJZ1aNlXsMU.
翻译:智能机器人依靠物体探测模型来感知环境。 在深层学习安全进步后,发现物体探测模型容易受到对抗性攻击。 但是,先前的研究主要侧重于攻击静态图像或离线视频。 因此,尚不清楚这种攻击是否会危及动态环境中的实世机器人应用。 本文通过展示首次实时对物体探测模型的在线攻击来弥补这一差距。 我们设计了三次攻击,为理想地点不存在的物体制造了捆绑箱。 攻击成功率在大约20次迭代中达到约90-%。 演示视频可在https://youtu.be/zJZZ1aNlXMU上查阅。