项目名称: 受限低维量子磁性材料的强磁场ESR研究

项目编号: No.11474110

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 欧阳钟文

作者单位: 华中科技大学

项目金额: 85万元

中文摘要: 低维量子磁性是凝聚态物理研究的热点。本项目针对当前研究的不足和蕴涵的研究机遇,尝试在块体低维量子磁性材料中引入新的自由度- - -纳米受限,并利用脉冲强磁场ESR研究其异常基态。首先制备系列不同晶粒尺寸的纳米晶样品,表征其形貌和晶体结构;然后通过变温和变频ESR测量,研究纳米晶样品的磁有序、磁激发和自旋隙等,建立它们与强磁场和纳米晶粒尺寸之间的关联,并通过分析拓扑结构、各向异性和磁交换相互作用,揭示其微观起源。重点研究S=1/2小自旋Cu、V氧化物和自旋阻挫的材料体系,特别关注已接近量子临界点的材料,探索在这些材料中引入自旋隙或长程有序,并发现新的量子效应和量子相变的可能性。

中文关键词: 强磁场ESR;纳米受限;低维量子磁性;自旋隙;量子相变

英文摘要: Low-dimensional quantum magnetism is an important topic of condensed matter physics. With the deficiencies and opportunities in present studies, we will try to introduce new degree of freedom-nanoscale in the bulk low-dimensional quantum magnetic materials and perform pulsed high-field ESR study on the novel ground state of these materials. First, nano-grain samples with various sizes will be synthesized and their morphology and crystal structure will be characterized. Second, by means of temperature- and frequency-dependent ESR measurements, we will study the magnetic ordering, magnetic excitation and spin gap of nano-grain samples. The relationship between the ground-state properties and magnetic field as well as nano-grain size will be constructed. The mechanism will be understood by analyzing the topological structure, magnetic anisotropy and exchange interaction. Much attention will be paid on the S=1/2 Cu and V oxides and the low-dimensional frustrated systems. In particular, we will focus on those materials which have been close to quantum critical point. It is expected to introduce spin gap or long-range magnetic order in these materials and find new quantum phenomena and transitions.

英文关键词: High-field ESR;Nanoscale confinement;Low-D quantum magnetism;Spin gap;Quantum phase transition

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】用于视觉常识推理的场景图增强图像-文本学习
专知会员服务
48+阅读 · 2021年12月20日
专知会员服务
23+阅读 · 2021年9月22日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
61+阅读 · 2021年6月22日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
36+阅读 · 2021年4月23日
【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
异质图嵌入综述: 方法、技术、应用和资源
专知会员服务
47+阅读 · 2020年12月13日
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关主题
相关VIP内容
【AAAI2022】用于视觉常识推理的场景图增强图像-文本学习
专知会员服务
48+阅读 · 2021年12月20日
专知会员服务
23+阅读 · 2021年9月22日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
61+阅读 · 2021年6月22日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
36+阅读 · 2021年4月23日
【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
异质图嵌入综述: 方法、技术、应用和资源
专知会员服务
47+阅读 · 2020年12月13日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员