This paper presents several novel algorithms for real-time cyberattack detection using the Auto-Associative Deep Random Neural Network, which were developed in the HORIZON 2020 IoTAC Project. Some of these algorithms require offline learning, while others require the algorithm to learn during its normal operation while it is also testing the flow of incoming traffic to detect possible attacks. Most of the methods we present are designed to be used at a single node, while one specific method collects data from multiple network ports to detect and monitor the spread of a Botnet. The evaluation of the accuracy of all the methods is carried out with real attack traces. These novel methods are also compared with other state-of-the-art approaches, showing that they offer better or equal performance, at lower computational learning and shorter detection times as compared to the existing approaches.


翻译:本文介绍了使用HORIZON 2020 IoTAC项目开发的自编码随机深度神经网络的多种新颖算法,用于实时检测网络攻击。其中一些算法需要离线学习,而其他算法需要在正常运行时进行学习,并测试传入流量以检测可能的攻击。我们提出的大多数方法是设计用于单个节点,而一个特定的方法则收集来自多个网络端口的数据以检测和监视僵尸网络的传播。使用真实攻击跟踪对所有方法的准确性进行评估。这些新颖方法与其他最先进的方法进行比较,显示出它们提供更好或相等的性能,而计算学习和检测时间却更短,更节省成本。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员