We consider the problem of optimizing a coverage function under a $\ell$-matchoid of rank $k$. We design fixed-parameter algorithms as well as streaming algorithms to compute an exact solution. Unlike previous work that presumes linear representativity of matroids, we consider the general oracle model. For the special case where the coverage function is linear, we give a deterministic fixed-parameter algorithm parameterized by $\ell$ and $k$. This result, combined with the lower bounds of Lovasz, and Jensen and Korte demonstrates a separation between the $\ell$-matchoid and the matroid $\ell$-parity problems in the setting of fixed-parameter tractability. For a general coverage function, we give both deterministic and randomized fixed-parameter algorithms, parameterized by $\ell$ and $z$, where $z$ is the number of points covered in an optimal solution. The resulting algorithms can be directly translated into streaming algorithms. For unweighted coverage functions, we show that we can find an exact solution even when the function is given in the form of a value oracle (and so we do not have access to an explicit representation of the set system). Our result can be implemented in the streaming setting and stores a number of elements depending only on $\ell$ and $z$, but completely indpendent of the total size $n$ of the ground set. This shows that it is possible to circumvent the recent space lower bound of Feldman et al, by parameterizing the solution value. This result, combined with existing lower bounds, also provides a new separation between the space and time complexity of maximizing an arbitrary submodular function and a coverage function in the value oracle model.
翻译:我们考虑在美元/ ell$- match 折合美元等级为 $k$ 的范围内优化覆盖函数的问题。 我们设计固定参数算法和流式算法来计算精确的解决方案。 与先前假定类固醇线性代表性的工作不同, 我们考虑一般标准模型。 对于覆盖函数线性的特殊情形, 我们给出一个确定性固定参数算法参数参数参数, 以$/ ell美元和 $美元为参数。 这个结果, 加上Lovassz 和 Jensen 和 Korte 的较低范围, 显示了美元- 利差和配差的参数在设定固定参数可移动性解决方案中存在差异。 对于一般覆盖功能, 我们给出了确定性和随机性固定的固定参数, 以美元和 z$为参数参数, 美元是最佳解决方案中覆盖的点数。 由此产生的算法只能直接转换为较低范围的运算法。 关于未加权的覆盖功能, 我们可以看到, 即便在设定固定值值值值的任意值值上, 也能够找到一个最新的计算结果, 直径值 。 。 以我们所设定的存的存的系统中, 设置 的直径的数值 。