In this paper, we study a spiked Wigner problem with an inhomogeneous noise profile. Our aim in this problem is to recover the signal passed through an inhomogeneous low-rank matrix channel. While the information-theoretic performances are well-known, we focus on the algorithmic problem. We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem and show that its rigorous state evolution coincides with the information-theoretic optimal Bayes fixed-point equations. We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random. Finally, from the adapted AMP iteration we deduce a simple and efficient spectral method that can be used to recover the transition for matrices with general variance profiles. This spectral method matches the conjectured optimal computational phase transition.
翻译:在本文中, 我们用一个不相容的噪声剖面来研究一个尖锐的维格问题。 我们在此问题上的目标是要恢复通过一个不相容的低级别矩阵通道传递的信号。 虽然信息理论性能是众所周知的, 但我们侧重于算法问题。 我们为不相容的问题得出了一个近似的信息传递算法( AMP ), 并显示其严格的状态演进与信息- 理论性最佳巴耶斯定点方程式相吻合。 我们特别发现存在一个统计- 计算差距, 已知的算法需要比信息- 理论性阈值大得多的信号- 噪音比率才能比随机性强。 最后, 我们从经过调整的缩略图中推断出一种简单有效的光谱法, 可以用来恢复带有一般差异剖面图的矩阵过渡。 这种光谱法与预测的最佳计算阶段过渡相吻合 。