We propose a novel flow synthesis based visual servoing framework enabling long-range obstacle avoidance for Micro Air Vehicles (MAV) flying amongst tall skyscrapers. Recent deep learning based frameworks use optical flow to do high-precision visual servoing. In this paper, we explore the question: can we design a surrogate flow for these high-precision visual-servoing methods, which leads to obstacle avoidance? We revisit the concept of saliency for identifying high-rise structures in/close to the line of attack amongst other competing skyscrapers and buildings as a collision obstacle. A synthesised flow is used to displace the salient object segmentation mask. This flow is so computed that the visual servoing controller maneuvers the MAV safely around the obstacle. In this approach, we use a multi-step Cross-Entropy Method (CEM) based servo control to achieve flow convergence, resulting in obstacle avoidance. We use this novel pipeline to successfully and persistently maneuver high-rises and reach the goal in simulated and photo-realistic real-world scenes. We conduct extensive experimentation and compare our approach with optical flow and short-range depth-based obstacle avoidance methods to demonstrate the proposed framework's merit. Additional Visualisation can be found at https://sites.google.com/view/monocular-obstacle/home
翻译:我们提出一个新的流动合成视觉观测框架,使微型航空飞行器(MAV)在高高的摩天大楼之间飞行,能够避免长程障碍。最近深深层次的学习基础框架利用光学流进行高精度视觉观测。在本文中,我们探讨问题:我们能否为这些高精度视觉观测-观测方法设计一种替代流程,从而导致避免障碍?我们重新审视确定高空结构的突出概念,以辨别高空结构/接近其他相互竞争的摩天大楼和建筑的攻击线,作为碰撞障碍。合成流动被用来取代突出的物体分割遮罩。这种流动如此计算,使视觉控制器在障碍周围安全地操纵MAV。在这个方法中,我们能否设计一种基于高精度视觉-透视法(CEM)的多步跨透镜控制来实现流量趋同,从而避免障碍。我们利用这个新型管道成功和持续地操纵高空结构,并在模拟和摄影现实世界的短视场中达到目标。我们进行广泛的实验,并将我们的视觉定位/视觉定位框架与光学/深度对比。我们所提议到的视野/深度方法。我们进行广泛的实验,可以将更多的视觉- 展示和视觉观察/比较。