Human beings use compositionality to generalise from past experiences to actual or fictive, novel experiences. To do so, we separate our experiences into fundamental atomic components. These atomic components can then be recombined in novel ways to support our ability to imagine and engage with novel experiences. We frame this as the ability to learn to generalise compositionally. And, we will refer to behaviours making use of this ability as compositional learning behaviours (CLBs). A central problem to learning CLBs is the resolution of a binding problem (BP) (by learning to, firstly, segregate the supportive stimulus components from the observation of multiple stimuli, and then, combine them in a single episodic experience). While it is another feat of intelligence that human beings perform with ease, it is not the case for state-of-the-art artificial agents. Thus, in order to build artificial agents able to collaborate with human beings, we propose to develop a novel benchmark to investigate agents' abilities to exhibit CLBs by solving a domain-agnostic version of the BP. We take inspiration from the language emergence and grounding framework of referential games and propose a meta-learning extension of referential games, entitled Meta-Referential Games, and use this framework to build our benchmark, that we name Symbolic Behaviour Benchmark (S2B). While it has the potential to test for more symbolic behaviours, rather than solely CLBs, in the present paper, though, we solely focus on the single-agent language grounding task that tests for CLBs. We provide baseline results for it, using state-of-the-art RL agents, and show that our proposed benchmark is a compelling challenge that we hope will spur the research community towards developing more capable artificial agents.
翻译:人类使用构成性来将过去的经验概括为实际或想象中的新经验。 为了做到这一点,我们将我们的经验分解为基本原子组成部分。 然后这些原子组成部分可以重新以新颖的方式结合, 支持我们想象和接触新经验的能力。 我们将此定义为学习概括组成的能力。 而且, 我们将提到利用这种能力作为组成学习行为的行为。 学习CLB的核心问题是解决一个具有约束力的问题( BBP ) ( 首先, 将支持性刺激部分从观察多种刺激成分分解为基本原子组成部分, 然后, 将它们合并成一个单一的缩略经历 。 虽然这是人类轻松地想象和接触新体验的能力的另一种行为。 我们将此作为最先进的人工代理体。 因此,为了建立能够与人类合作的人工代理体,我们建议开发一个新的基准, 调查代理人的能力,通过解决具有说服力的 BP 挑战, 我们从语言的出现和基底框架中汲取灵感, 我们的C- 基础游戏, 并且提出一个比CB 基准级的模型测试, 我们的基底级游戏, 我们的基底标准测试, 将展示一个比基级游戏的基底标准测试,我们更能的基底测试, 我们的基底的基底的基底测试的基底测试, 将显示我们更能的基底的基底的基底的基底的基底的基底的基底的基底的基底, 我们的基底, 我们将显示我们更基底的基底的基底的基底的基底, 我们的基底, 我们的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的B。