Given a single algebraic input-output equation, we present a method for finding different representations of the associated system in the form of rational realizations; these are dynamical systems with rational right-hand sides. It has been shown that in the case where the input-output equation is of order one, rational realizations can be computed, if they exist. In this work, we focus first on the existence and actual computation of the so-called observable rational realizations, and secondly on rational realizations with real coefficients. The study of observable realizations allows to find every rational realization of a given first order input-output equation, and the necessary field extensions in this process. We show that for first order input-output equations the existence of a rational realization is equivalent to the existence of an observable rational realization. Moreover, we give a criterion to decide the existence of real rational realizations. The computation of observable and real realizations of first order input-output equations is fully algorithmic. We also present partial results for the case of higher order input-output equations.


翻译:给定单个代数输入输出方程,我们提出了一种找到相应系统的有理实现的不同表示的方法。这些是具有有理右手边的动态系统。已经表明,在输入输出方程为一阶的情况下,如果存在有理实现,则可以计算有理实现。在这项工作中,我们首先关注存在和实际计算所谓的可观测有理实现,其次是具有实系数的有理实现。可观测实现的研究允许找到给定一阶输入输出方程的每个有理实现,并在此过程中需要扩展必要的场。我们表明,在一阶输入输出方程的情况下,有理实现的存在等于可观测有理实现的存在。此外,我们给出了一个判断是否存在实有理实现的标准。首阶输入输出方程的可观测和实现的计算是完全算法化的。我们还介绍了更高阶输入输出方程的部分结果。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
40+阅读 · 2020年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
时延神经网络(TDNN)原理及其TensorFlow实现
深度学习每日摘要
56+阅读 · 2017年5月19日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
40+阅读 · 2020年10月13日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
时延神经网络(TDNN)原理及其TensorFlow实现
深度学习每日摘要
56+阅读 · 2017年5月19日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员