We propose a novel algorithm for supervised dimensionality reduction named Manifold Partition Discriminant Analysis (MPDA). It aims to find a linear embedding space where the within-class similarity is achieved along the direction that is consistent with the local variation of the data manifold, while nearby data belonging to different classes are well separated. By partitioning the data manifold into a number of linear subspaces and utilizing the first-order Taylor expansion, MPDA explicitly parameterizes the connections of tangent spaces and represents the data manifold in a piecewise manner. While graph Laplacian methods capture only the pairwise interaction between data points, our method capture both pairwise and higher order interactions (using regional consistency) between data points. This manifold representation can help to improve the measure of within-class similarity, which further leads to improved performance of dimensionality reduction. Experimental results on multiple real-world data sets demonstrate the effectiveness of the proposed method.
翻译:我们提议了一个名为 Manifound 分区差异分析(MPDA) 的监督维度减少的新算法。 它旨在找到一个线性嵌入空间, 以便按照与数据元的本地变异相一致的方向, 实现分类内部相似性, 而属于不同分类的近邻数据则完全分离。 通过将数据元分解成若干线性子空间, 并利用第一级泰勒扩展, MPDA 将相近空间的连接明确参数化, 并以片断的方式代表数据元。 图形 Laplaceian 方法只捕捉数据点之间的对称互动, 而我们的方法则捕捉到数据点之间的对称和更高顺序互动( 使用区域一致性 ) 。 这种多重表达方式可以帮助改进分类内部相似性的测量, 从而进一步提高了维度的减缩性。 多个真实世界数据集的实验结果显示了拟议方法的有效性 。