Self-supervised monocular depth estimation approaches suffer not only from scale ambiguity but also infer temporally inconsistent depth maps w.r.t. scale. While disambiguating scale during training is not possible without some kind of ground truth supervision, having scale consistent depth predictions would make it possible to calculate scale once during inference as a post-processing step and use it over-time. With this as a goal, a set of temporal consistency losses that minimize pose inconsistencies over time are introduced. Evaluations show that introducing these constraints not only reduces depth inconsistencies but also improves the baseline performance of depth and ego-motion prediction.


翻译:自监督单目深度估计方法不仅存在尺度模糊, 还会推断与尺度不一致的时间上不一致的深度图. 虽然训练期间无法消除尺度歧义而无需一定的地面真实监督, 但深度预测具有尺度一致性则可以在推断期间一次用后处理步骤计算尺度, 并随时间使用. 为此, 引入了一组时间一致性损失, 以最小化时间上的姿态不一致性. 评估表明, 引入这些约束不仅降低了深度的不一致性, 而且还提高了深度和自我运动预测的基线性能.

0
下载
关闭预览

相关内容

MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员