Stein thinning is a promising algorithm proposed by (Riabiz et al., 2022) for post-processing outputs of Markov chain Monte Carlo (MCMC). The main principle is to greedily minimize the kernelized Stein discrepancy (KSD), which only requires the gradient of the log-target distribution, and is thus well-suited for Bayesian inference. The main advantages of Stein thinning are the automatic remove of the burn-in period, the correction of the bias introduced by recent MCMC algorithms, and the asymptotic properties of convergence towards the target distribution. Nevertheless, Stein thinning suffers from several empirical pathologies, which may result in poor approximations, as observed in the literature. In this article, we conduct a theoretical analysis of these pathologies, to clearly identify the mechanisms at stake, and suggest improved strategies. Then, we introduce the regularized Stein thinning algorithm to alleviate the identified pathologies. Finally, theoretical guarantees and extensive experiments show the high efficiency of the proposed algorithm.
翻译:Stein 瘦化是(Riabiz等人,2022年)针对Markov链Monte Carlo(MCMCC)加工后产出提出的一种很有希望的算法,其主要原则是贪婪地尽量减少内脏的斯坦因差异(KSD),这只要求日志-目标分布梯度,因此对巴伊西亚的推论非常合适。Stein 瘦化的主要好处是自动消除燃烧期,纠正最近MCMC算法引入的偏差,以及接近目标分布的无症状特性。然而,Stein 瘦化受到若干经验性病理的影响,如文献所述,这可能导致近似不力。在本篇文章中,我们对这些病理进行理论分析,以明确所涉机制,并提出改进的战略。然后,我们引入正规化的Stein 瘦化算法,以缓解已确定的病理。最后,理论保证和广泛的实验表明拟议的算法的高度效率。