The increasing availability of real-time data has fueled the prevalence of algorithmic bidding (or autobidding) in online advertising markets, and has enabled online ad platforms to produce signals through machine learning techniques (i.e., ML advice) on advertisers' true perceived values for ad conversions. Previous works have studied the auction design problem while incorporating ML advice through various forms to improve total welfare of advertisers. Yet, such improvements could come at the cost of individual bidders' welfare, consequently eroding fairness of the ad platform. Motivated by this, we study how ad platforms can utilize ML advice to improve welfare guarantees and fairness on the individual bidder level in the autobidding world. We focus on a practical setting where ML advice takes the form of lower confidence bounds (or confidence intervals). We motivate a simple approach that directly sets such advice as personalized reserve prices when the platform consists of value-maximizing autobidders who are subject to return-on-ad spent (ROAS) constraints competing in multiple parallel auctions. Under parallel VCG auctions with ML advice-based reserves, we present a worst-case welfare lower-bound guarantee for individual agents, and show that platform fairness is positively correlated with ML advice quality. We also present an instance that demonstrates our welfare guarantee is tight. Further, we prove an impossibility result showing that no truthful, and possibly randomized mechanism with anonymous allocations and ML advice as personalized reserves can achieve universally better fairness guarantees than VCG when coupled with ML advice of the same quality. Finally, we extend our fairness guarantees with ML advice to generalized first price (GFP) and generalized second price (GSP) auctions.


翻译:随着实时数据的日益丰富,算法竞价(或自动竞价)在在线广告市场中越发盛行,并使在线广告平台能够通过机器学习技术(即 ML 建议)产生关于广告转化的真实感知价值的信号。以往的研究已经研究了通过不同形式的 ML 建议并结合拍卖设计问题以改善广告商的总体福利。然而这些改进可能会以个人竞标者的福利为代价,因此侵蚀了广告平台的公平性。基于此,我们研究了广告平台如何利用 ML 建议在自动竞价领域中改善对于竞标者的福利保障和公平性。我们集中研究了一种实际环境,即在拍卖平台由以价值最大化为目标且受 ROAS 约束的自动竞标者在多个并行拍卖中竞争的情况下,如何直接将 ML 建议作为个性化储备价格来设置。在使用 ML 建议为储备的并行 VCG 拍卖下,我们为个体代理人提供了最坏情况下的福利下限保证,并表明平台的公平性与 ML 建议质量呈正相关。我们还展示了一个示例,证明了我们的福利保证是紧的。此外,我们证明了一个不可能的结果,即没有匿名分配且仅带有 ML 建议的诚实、可能随机的机制可以在与同等品质的 ML 建议相结合时实现普遍更好的公平保证。最后,我们将 ML 建议下的公平保证扩展到广义第一价格和广义第二价格拍卖。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
WSDM2022推荐算法部分论文整理(附直播课程)
机器学习与推荐算法
0+阅读 · 2022年7月21日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
WSDM2022推荐算法部分论文整理(附直播课程)
机器学习与推荐算法
0+阅读 · 2022年7月21日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员