The stochastic processes underlying the growth and stability of biological and psychological systems reveal themselves when far from equilibrium. Far from equilibrium, nonergodicity reigns. Nonergodicity implies that the average outcome for a group/ensemble (i.e., of representative organisms/minds) is not necessarily a reliable estimate of the average outcome for an individual over time. However, the scientific interest in causal inference suggests that we somehow aim at stable estimates of the cause that will generalize to new individuals in the long run. Therefore, the valid analysis must extract an ergodic stationary measure from fluctuating physiological data. So the challenge is to extract statistical estimates that may describe or quantify some of this nonergodicity (i.e., of the raw measured data) without themselves (i.e., the estimates) being nonergodic. We show that traditional linear statistics such as the standard deviation (SD), coefficient of variation (CV), and root mean square (RMS) can show nonstationarity, violating the ergodic assumption. Time series of statistics addressing sequential structure and its potential nonlinearity: fractality and multifractality, change in a time-independent way and fulfill the ergodic assumption. Complementing traditional linear indices with fractal and multifractal indices would empower the study of stochastic far-from-equilibrium biological and psychological dynamics.


翻译:生物和心理系统增长和稳定背后的随机过程在远离平衡的情况下就会显现出来。远离平衡,非遗传性就占上风。非遗传性意味着一个群体/整体(即具有代表性的生物体/体)的平均结果不一定是对个人长期平均结果的可靠估计。然而,对因果推论的科学兴趣表明,我们在某种程度上的目标是对原因进行稳定的估计,从长远来看,这种估计将概括到新的人。因此,有效的分析必须从波动的生理数据中提取一个固定的尺度。因此,挑战在于提取统计估计,这些统计估计可以描述或量化某些非遗传性(即具有代表性的生物体/体/体),而本身(即具有代表性的生物体/体/体)不一定可靠。我们表明,传统线性统计,如标准偏差(SD)、变异系数(CV)和根正正正正方(RMS)等,可以显示不常态性,从而违反ERgodi假设。关于连续结构及其潜在不直系性结构的统计系列,以及其潜在的不直系性、直系性、直系性、直系性、直系性、直系性、直系性、直系性、多直系性、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、多等等等等等等等等等等等。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
35+阅读 · 2021年7月7日
专知会员服务
50+阅读 · 2020年12月14日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
35+阅读 · 2021年7月7日
专知会员服务
50+阅读 · 2020年12月14日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员