The study of ancient writings has great value for archaeology and philology. Essential forms of material are photographic characters, but manual photographic character recognition is extremely time-consuming and expertise-dependent. Automatic classification is therefore greatly desired. However, the current performance is limited due to the lack of annotated data. Data generation is an inexpensive but useful solution for data scarcity. Nevertheless, the diverse glyph shapes and complex background textures of photographic ancient characters make the generation task difficult, leading to the unsatisfactory results of existing methods. In this paper, we propose an unsupervised generative adversarial network called AGTGAN. By the explicit global and local glyph shape style modeling followed by the stroke-aware texture transfer, as well as an associate adversarial learning mechanism, our method can generate characters with diverse glyphs and realistic textures. We evaluate our approach on the photographic ancient character datasets, e.g., OBC306 and CSDD. Our method outperforms the state-of-the-art approaches in various metrics and performs much better in terms of the diversity and authenticity of generated samples. With our generated images, experiments on the largest photographic oracle bone character dataset show that our method can achieve a significant increase in classification accuracy, up to 16.34%.
翻译:古代著作的研究对考古学和哲学具有巨大的价值。 基本材料形式是摄影字符, 但人工摄影特征的识别极其耗时和依赖专门知识。 因此,非常需要自动分类。 然而, 由于缺乏附加说明的数据, 目前的性能有限。 数据生成是数据稀缺的一种廉价但有用的解决办法。 然而, 摄影古代人物的多种古代形状和复杂的背景纹理使得产生任务困难, 导致现有方法的不满意结果。 在本文中, 我们建议建立一个不受监督的基因对抗网络, 名为 AGTGAN。 以明显的全球和地方格格式形状模式建模, 之后是中华质转换, 以及一个相关的对抗性学习机制, 我们的方法可以产生具有不同特征和现实质的字符。 我们评估了我们关于古代特征数据集的方法, 例如 OBC306 和 CSPD 。 我们的方法超越了各种计量方法中最先进的现代方法。 我们的方法, 在各种计量方法中, 并且以更精确的方式展示了我们所生成的骨质特征的精度和真实性。</s>