Conventional supervised learning methods, especially deep ones, are found to be sensitive to out-of-distribution (OOD) examples, largely because the learned representation mixes the semantic factor with the variation factor due to their domain-specific correlation, while only the semantic factor causes the output. To address the problem, we propose a Causal Semantic Generative model (CSG) based on a causal thought so that the two factors are modeled separately, and develop methods to learn it on a single training domain and predict in a test domain without (OOD generalization) or with unsupervised data (domain adaptation). We prove that under proper conditions, CSG identifies the semantic factor by learning from training data, and this semantic identification guarantees the boundedness of OOD generalization error and the success of adaptation. The methods and theory are built on the invariance principle of causal generative mechanisms, which is fundamental and general. The methods are based on variational Bayes, with a novel design for both efficient learning and easy prediction. Empirical study demonstrates the improved test accuracy for both OOD generalization and domain adaptation.


翻译:常规监督教学方法,特别是深层方法,被认为对分配外(OOD)实例十分敏感,主要是因为所学的表述方式将语义因素与因具体领域相关关系而产生的变异因素混为一谈,而只有语义因素才导致产出。为了解决这个问题,我们提议了一个基于因果考虑的Causal语义感化模型(CSG),以便将这两个因素分开建模,并制订方法,在单一的培训领域进行学习,并在试验领域进行预测,而没有(OOOD一般化)或未经监督的数据(主要适应),我们证明,在适当条件下,CSG通过从培训数据中学习确定语义因素,这种语义性识别方式保证OOD一般化错误的界限性以及适应的成功性。方法和理论基于因果感化机制的不定性原则,这是基本和一般的。方法基于变异性海湾,为高效率学习和易于预测提供了新颖的设计。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员