Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients. To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients. It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients. This paper aims to propose a contract theory based FL task training model towards minimizing incentive budget subject to clients being individually rational (IR) and incentive compatible (IC) in each FL training round. We design a two-dimensional contract model by formally defining two private types of clients, namely data quality and computation effort. To effectively aggregate the trained models, a contract-based aggregator is proposed. We analyze the feasible and optimal contract solutions to the proposed contract model. %Experimental results demonstrate that the proposed framework and contract model can effective improve the generation accuracy of FL tasks. Experimental results show that the generalization accuracy of the FL tasks can be improved by the proposed incentive mechanism where contract-based aggregation is applied.


翻译:联邦学习(FL)是数据保密的机器学习模式,实现了由分布式客户培训的协作模式。为了完成FL任务,任务出版商需要向FL服务器和FL服务器支付财政奖励,将任务卸下给FL客户;由于FL任务是由客户私下培训,因此很难为FL客户设计适当的奖励办法。本文件旨在提出基于合同理论的FL任务培训模式,以尽量减少奖励预算,条件是客户在每一轮FL培训中都具有个人理性和激励兼容性。我们设计了二维合同模式,正式界定了两类私人客户,即数据质量和计算工作。为了有效地综合经过培训的模型,提议了一个基于合同的聚合器。我们分析了拟议合同模式的可行和最佳合同解决办法。% 研究结果表明,拟议的框架和合同模式能够有效地提高FL任务的生成准确性。实验结果表明,拟议的奖励机制可以改进FL任务的普及性准确性,因为采用基于合同的总合。

0
下载
关闭预览

相关内容

【经典书】主动学习理论,226页pdf,Theory of Active Learning
专知会员服务
125+阅读 · 2021年7月14日
专知会员服务
15+阅读 · 2021年5月21日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
10+阅读 · 2021年3月30日
Privacy-Preserving News Recommendation Model Learning
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员