We present one-shot federated learning, where a central server learns a global model over a network of federated devices in a single round of communication. Our approach - drawing on ensemble learning and knowledge aggregation - achieves an average relative gain of 51.5% in AUC over local baselines and comes within 90.1% of the (unattainable) global ideal. We discuss these methods and identify several promising directions of future work.

7
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

0
13
下载
预览

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

0
17
下载
预览

Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforcement learning tasks, and often assumes full knowledge of task labels and boundaries. In this work, we propose an approach (CURL) to tackle a more general problem that we will refer to as unsupervised continual learning. The focus is on learning representations without any knowledge about task identity, and we explore scenarios when there are abrupt changes between tasks, smooth transitions from one task to another, or even when the data is shuffled. The proposed approach performs task inference directly within the model, is able to dynamically expand to capture new concepts over its lifetime, and incorporates additional rehearsal-based techniques to deal with catastrophic forgetting. We demonstrate the efficacy of CURL in an unsupervised learning setting with MNIST and Omniglot, where the lack of labels ensures no information is leaked about the task. Further, we demonstrate strong performance compared to prior art in an i.i.d setting, or when adapting the technique to supervised tasks such as incremental class learning.

0
5
下载
预览

Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.

0
13
下载
预览

There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.

0
10
下载
预览

Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, meta-learning typically uses shallow neural networks (SNNs), thus limiting its effectiveness. In this paper we propose a novel few-shot learning method called meta-transfer learning (MTL) which learns to adapt a deep NN for few shot learning tasks. Specifically, "meta" refers to training multiple tasks, and "transfer" is achieved by learning scaling and shifting functions of DNN weights for each task. In addition, we introduce the hard task (HT) meta-batch scheme as an effective learning curriculum for MTL. We conduct experiments using (5-class, 1-shot) and (5-class, 5-shot) recognition tasks on two challenging few-shot learning benchmarks: miniImageNet and Fewshot-CIFAR100. Extensive comparisons to related works validate that our meta-transfer learning approach trained with the proposed HT meta-batch scheme achieves top performance. An ablation study also shows that both components contribute to fast convergence and high accuracy.

0
6
下载
预览

We train a recurrent neural network language model using a distributed, on-device learning framework called federated learning for the purpose of next-word prediction in a virtual keyboard for smartphones. Server-based training using stochastic gradient descent is compared with training on client devices using the Federated Averaging algorithm. The federated algorithm, which enables training on a higher-quality dataset for this use case, is shown to achieve better prediction recall. This work demonstrates the feasibility and benefit of training language models on client devices without exporting sensitive user data to servers. The federated learning environment gives users greater control over their data and simplifies the task of incorporating privacy by default with distributed training and aggregation across a population of client devices.

0
3
下载
预览

One of the main challenges in ranking is embedding the query and document pairs into a joint feature space, which can then be fed to a learning-to-rank algorithm. To achieve this representation, the conventional state of the art approaches perform extensive feature engineering that encode the similarity of the query-answer pair. Recently, deep-learning solutions have shown that it is possible to achieve comparable performance, in some settings, by learning the similarity representation directly from data. Unfortunately, previous models perform poorly on longer texts, or on texts with significant portion of irrelevant information, or which are grammatically incorrect. To overcome these limitations, we propose a novel ranking algorithm for question answering, QARAT, which uses an attention mechanism to learn on which words and phrases to focus when building the mutual representation. We demonstrate superior ranking performance on several real-world question-answer ranking datasets, and provide visualization of the attention mechanism to otter more insights into how our models of attention could benefit ranking for difficult question answering challenges.

0
3
下载
预览

Meta-learning is a powerful tool that builds on multi-task learning to learn how to quickly adapt a model to new tasks. In the context of reinforcement learning, meta-learning algorithms can acquire reinforcement learning procedures to solve new problems more efficiently by meta-learning prior tasks. The performance of meta-learning algorithms critically depends on the tasks available for meta-training: in the same way that supervised learning algorithms generalize best to test points drawn from the same distribution as the training points, meta-learning methods generalize best to tasks from the same distribution as the meta-training tasks. In effect, meta-reinforcement learning offloads the design burden from algorithm design to task design. If we can automate the process of task design as well, we can devise a meta-learning algorithm that is truly automated. In this work, we take a step in this direction, proposing a family of unsupervised meta-learning algorithms for reinforcement learning. We describe a general recipe for unsupervised meta-reinforcement learning, and describe an effective instantiation of this approach based on a recently proposed unsupervised exploration technique and model-agnostic meta-learning. We also discuss practical and conceptual considerations for developing unsupervised meta-learning methods. Our experimental results demonstrate that unsupervised meta-reinforcement learning effectively acquires accelerated reinforcement learning procedures without the need for manual task design, significantly exceeds the performance of learning from scratch, and even matches performance of meta-learning methods that use hand-specified task distributions.

0
6
下载
预览

Standard deep learning systems require thousands or millions of examples to learn a concept, and cannot integrate new concepts easily. By contrast, humans have an incredible ability to do one-shot or few-shot learning. For instance, from just hearing a word used in a sentence, humans can infer a great deal about it, by leveraging what the syntax and semantics of the surrounding words tells us. Here, we draw inspiration from this to highlight a simple technique by which deep recurrent networks can similarly exploit their prior knowledge to learn a useful representation for a new word from little data. This could make natural language processing systems much more flexible, by allowing them to learn continually from the new words they encounter.

0
5
下载
预览
小贴士
相关论文
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey
Sanmit Narvekar,Bei Peng,Matteo Leonetti,Jivko Sinapov,Matthew E. Taylor,Peter Stone
13+阅读 · 2020年3月10日
Advances and Open Problems in Federated Learning
Peter Kairouz,H. Brendan McMahan,Brendan Avent,Aurélien Bellet,Mehdi Bennis,Arjun Nitin Bhagoji,Keith Bonawitz,Zachary Charles,Graham Cormode,Rachel Cummings,Rafael G. L. D'Oliveira,Salim El Rouayheb,David Evans,Josh Gardner,Zachary Garrett,Adrià Gascón,Badih Ghazi,Phillip B. Gibbons,Marco Gruteser,Zaid Harchaoui,Chaoyang He,Lie He,Zhouyuan Huo,Ben Hutchinson,Justin Hsu,Martin Jaggi,Tara Javidi,Gauri Joshi,Mikhail Khodak,Jakub Konečný,Aleksandra Korolova,Farinaz Koushanfar,Sanmi Koyejo,Tancrède Lepoint,Yang Liu,Prateek Mittal,Mehryar Mohri,Richard Nock,Ayfer Özgür,Rasmus Pagh,Mariana Raykova,Hang Qi,Daniel Ramage,Ramesh Raskar,Dawn Song,Weikang Song,Sebastian U. Stich,Ziteng Sun,Ananda Theertha Suresh,Florian Tramèr,Praneeth Vepakomma,Jianyu Wang,Li Xiong,Zheng Xu,Qiang Yang,Felix X. Yu,Han Yu,Sen Zhao
17+阅读 · 2019年12月10日
Continual Unsupervised Representation Learning
Dushyant Rao,Francesco Visin,Andrei A. Rusu,Yee Whye Teh,Razvan Pascanu,Raia Hadsell
5+阅读 · 2019年10月31日
Lu Liu,Tianyi Zhou,Guodong Long,Jing Jiang,Chengqi Zhang
13+阅读 · 2019年9月11日
Adversarial Transfer Learning
Garrett Wilson,Diane J. Cook
10+阅读 · 2018年12月6日
Meta-Transfer Learning for Few-Shot Learning
Qianru Sun,Yaoyao Liu,Tat-Seng Chua,Bernt Schiele
6+阅读 · 2018年12月6日
Federated Learning for Mobile Keyboard Prediction
Andrew Hard,Kanishka Rao,Rajiv Mathews,Françoise Beaufays,Sean Augenstein,Hubert Eichner,Chloé Kiddon,Daniel Ramage
3+阅读 · 2018年11月8日
Learning to Focus when Ranking Answers
Dana Sagi,Tzoof Avny,Kira Radinsky,Eugene Agichtein
3+阅读 · 2018年8月8日
Abhishek Gupta,Benjamin Eysenbach,Chelsea Finn,Sergey Levine
6+阅读 · 2018年6月12日
Andrew K. Lampinen,James L. McClelland
5+阅读 · 2017年10月27日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
6+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
47+阅读 · 2019年1月1日
RL 真经
CreateAMind
4+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
24+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
9+阅读 · 2017年9月24日
Top